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ARTICLE INFO ABSTRACT
Handling Editor: Dr. Lixiao Zhang Agroforestry is a strategic asset for combating climate change and mitigating the environmental impacts of
agricultural intensification, offering a nature-based solution for enhancing landscape resilience. In particular,
Keywords: poplar plantations contribute to the development of ecological networks within homogeneous agricultural
Agroforestry landscapes, while also producing high-demand plywood and sequestering CO5 in durable manufactured goods.
gz;rglon stock Monitoring short-rotation poplar plantations requires frequent updates, which are infeasible with conventional
Poplar plantation National Forest Inventories (NFIs). Remote sensing (RS) has emerged as a highly effective tool for monitoring the
Sentinel structural variables of poplar plantations. This study aims to estimate the carbon stocks of poplar plantations in

the Padan Plain, which spans approximately 46,000 km? in northern Italy. To achieve this, we developed a 10m
high-resolution canopy height model (CHM) using a deep learning U-Net approach, with Sentinel-1 and Sentinel-
2 multi-band imagery as predictors for GEDI waveforms derived tree height. The U-Net CHM for 2021 was
evaluated with external validation data from NFI plots, achieving a mean absolute error of 2.6 m. Using annual
poplar plantations data in the survey area, along with a poplar-specific yield table derived from terrestrial laser
scanning, we applied the U-Net CHM to predict key forestry variables, including diameter at breast height (DBH),
growing stock volume (GSV), aboveground biomass (AGB), and carbon stock (CS) in all stands. Results were
compared with external validation data from NFI, yielding RMSE values of 30.7 %, 46.2 %, and 63.2 % for DBH,
GSV, and AGB, respectively. Meanwhile, independent field surveys produced RMSE values of 19 % and 37.7 %
for DBH and GSV, respectively. The average GSV estimated was 70 m® ha™!, while total CS were 12 MgC ha™L.
Based on poplar plantation maps for 2021 and 2022, we estimated the total harvested GSV of poplar trees to be
370,000 m®, equal to 66,000 MgC. The corresponding average harvested area was 1.5 ha, with an average yield
of 130 m® per hectare. The integration of multiple RS datasets with advanced machine learning techniques fa-
cilitates the effective monitoring of dynamic poplar plantations, for both mapping purposes and quantifying key
forest variables relevant to climate change mitigation, such as carbon stocks.

Remote sensing

1. Introduction strategic asset for addressing climate change and mitigating the envi-
ronmental impacts of agricultural intensification while also providing a

Agroforestry refers to land-use systems in which trees are grown in nature-based solution for enhancing landscape resilience (Golicz et al.,
combination with agriculture on the same land (European Commission, 2022; FOREST EUROPE, 2018). However, not all EU countries adopt the
2014). These systems have gained renewed attention in Europe as a same definition of agroforestry (Golicz et al., 2022). As a result,

* Corresponding author. GeoLAB - Laboratoy of Forest Geomatics, Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies,
University of Florence, via San Bonaventura 13, 1-50144, Florence, Italy.
E-mail address: elia.vangi@unifi.it (E. Vangi).

https://doi.org/10.1016/j.jenvman.2025.127197

Received 4 April 2025; Received in revised form 20 August 2025; Accepted 3 September 2025

Available online 10 September 2025

0301-4797/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-2341-3268
https://orcid.org/0000-0002-2341-3268
https://orcid.org/0000-0002-9772-2258
https://orcid.org/0000-0002-9772-2258
https://orcid.org/0000-0003-4038-9068
https://orcid.org/0000-0003-4038-9068
https://orcid.org/0000-0003-2107-1038
https://orcid.org/0000-0003-2107-1038
mailto:elia.vangi@unifi.it
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2025.127197
https://doi.org/10.1016/j.jenvman.2025.127197
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2025.127197&domain=pdf
http://creativecommons.org/licenses/by/4.0/

G. D’Amico et al.

practices considered agroforestry in one country or region may be
classified as either forestry or agricultural activities in other EU coun-
tries and regions (Burgess and Rosati, 2018). Notably, the role of agro-
forestry in carbon sequestration remains understudied (Corona et al.,
2023; C-FARMs, 2023).

The Padan Plain in northern Italy is one of Europe’s most intensively
cultivated agricultural regions (D’Amico et al., 2021; Romano et al.,
2024). Trees play a crucial role in mitigating pollutants and improving
environmental quality in these agricultural landscapes. This mitigation
function is partly fulfilled through agroforestry activities, particularly
those focused on fruit and timber production. Poplar (Populus spp.) is
critical in this region. As a fast-growing species, it is widely cultivated in
specialized plantations for timber production, with rotations of 10-12
years for plywood production (Corona et al., 2024; Nervo et al., 2024).
Poplar plywood is in high demand across various industries, making
poplar plantations strategically important as a nature-based solution at
the EU level (Freer-Smith et al., 2019). The rapid growth of poplar en-
ables the storage of significant amounts of COy over a short period,
enhancing soil sequestration (Antoniella et al., 2024; Feng et al., 2020),
creating ecological networks, and mitigating climate change by locking
carbon in durable products. Additionally, poplar plantations help reduce
the pressure on natural forests by meeting the global demand for forest
products (Feng et al., 2020; Freer-Smith et al., 2019; Lukaszkiewicz
et al., 2024).

However, these plantations are highly dynamic, and accurate, reli-
able, and timely monitoring updates are crucial for managing them
effectively (Bergante, 2022; D’Amico et al., 2021). In particular, canopy
characteristics such as height are considered crucial (Romano et al.,
2024), as they enable a range of assessments related to ecosystem ser-
vices (Abelleira et al., 2016), carbon stock quantification (Karna et al.,
2015), wildlife management (Hyde et al., 2006), and sustainable forest
management (Wulder et al., 2008). Canopy height is directly correlated
with both ecological and site-specific indicators (e.g., site quality,
climate conditions), as well as stand variables such as stand age, primary
productivity, above ground biomass, Leaf Area Index (LAI), and canopy
cover (Torres de Almeida et al., 2022).

Modern land monitoring systems are based on proximal and remote
sensing technologies, enabling the investigation of tree canopy charac-
teristics in a robust and replicable manner, which significantly improves
monitoring compared to traditional fieldwork (Romano et al., 2024).
Different technologies are suitable such as terrestrial cameras (Romano
et al., 2024; Chianucci et al., 2020), UAV photogrammetric data
(Romano et al., 2024; Chianucci et al., 2020), terrestrial laser scanning
(Puletti et al., 2021), airborne laser scanning (Tompalski et al., 2019),
and satellite stereo mapping (Liu et al., 2019). However, the limited
range of technologies, such as UAVs, terrestrial LiDAR (Light Detection
and Ranging), and cameras, restricts their effectiveness in farm-level
investigations. For large-scale assessments, these tools are often inade-
quate. At the same time, options like LiDAR from Airborne Laser Scan-
ning (although capable of covering vast areas) are typically
cost-prohibitive for regular monitoring, even on an annual basis, to
track plantation dynamics. A recent study by Liu et al. (2019) addressed
this limitation, creating a canopy height map in flat areas using stereo
and multispectral data from the Chinese satellite ZY3-02. However,
these sensors are mainly only locally available nowadays, severely
limiting their application. Understanding canopy height variation is
essential for polar plantation management, especially in the Po Valley,
where the increased frequency and severity of drought events related to
climate change potentially compromises the canopy structure and
growth rate of poplar plantations (Romano et al., 2022; Baronetti et al.,
2022).

Emerging opportunities arise using satellite data. Among these,
Sentinel-1 (S1) radar data, Sentinel-2 (S2) multispectral optical data,
and spaceborne LiDAR data from the Global Ecosystem Dynamics
Investigation (GEDI) mission are particularly promising, as they were
developed specifically for land and environmental monitoring and are
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freely available. The two S1 polar-orbiting satellites provide global
coverage of Synthetic Aperture Radar (SAR) operating in the C-band.
This wavelength proves useful due to its greater dynamic range of
backscattering (Dalponte et al., 2023). Whilst, the S2 mission provides
high spatial resolution optical data, featuring bands with a resolution of
up to 10 m and a dense time series, offering high spectral resolution with
ten bands useful for vegetation investigation. The revisit time varies
from two to five days, depending on the latitude. Notably, GEDI was the
first LIDAR satellite mission, specifically designed to recover vertical
vegetation structures and collect innovative data on vegetation since
April 2019 aboard the International Space Station (ISS). Providing 25-m
resolution forest height measurements in tropical and temperate forests
(51.6° N to 51.6° S latitude). GEDI is equipped with a waveform LiDAR
that consists of three lasers, generating eight transects (beams) of forest
structural information.

Although all sensor data have been used to create various forest-
related products, integrating multiple sensor data appears to be the
most effective approach. Accordingly, GEDI forest height measurements
have been combined with Landsat data to produce a global forest canopy
height model (CHM) map with a 30-m spatial resolution for 2019
(Potapov et al., 2021). Lang et al. (2023) generated a global canopy
height map with a 10-m resolution predicting the GEDI RH98 (relative
height, i.e., the height below which 98 % of the returned pulse energy is
received) footprint based on S2 imagery. Pauls et al. (2024) used S1 and
S2 cloud-free data, along with GEDI RH100, in a fully convolutional
neural network to generate high-resolution (10 m) global-scale CHM.
Other studies have developed regional 10-m canopy height models
(CHMs) using S2 and aerial LiDAR data (Astola et al., 2021; Fayad et al.,
2024). Recently, GEDI data were combined with LiDAR data to train
self-supervised learning and vision transformer models based on Maxar
optical imagery, producing high-resolution (1 m) CHM (Tolan et al.,
2024).

To monitor the changes in poplar plantations — not only for creating
plantation maps but also for quantifying key variables essential for
assessing the impact of climate change mitigation, such as carbon stock
— the integration of multiple remote sensing datasets which providing
timely, comprehensive and frequently updated data together with
advanced machine learning approaches are crucial. Deep learning (DL)
techniques have proven particularly promising in this context. Among
these, Convolutional Neural Networks (CNNs) offer powerful tools that
enable remote sensing research to handle large volumes of training data,
resulting in more accurate outcomes, particularly for image interpreta-
tion tasks. CNNs can learn multi-scale image features, such as texture,
which can be used for making predictions (Dalagnol et al., 2022; Ill-
arionova et al., 2022).

Several datasets were available in our extensive survey area. First,
annual poplar plantation maps were developed through semi-automatic
classification of remote sensing (RS) images, which were then refined
through photointerpretation of high-resolution orthophotos (D’Amico
et al., 2021). Second, an allometric equation for poplar tree volume was
developed using terrestrial LiDAR data (Chianucci et al., 2020). How-
ever, combining these datasets with sophisticated new methods has yet
to be fully explored.

In this study, a DL model that leverages GEDI’s height data as a
reference to estimate poplar plantation carbon stocks was implemented.

This represents the first application of a U-Net architecture to map
poplar plantations, in which GEDI height data were integrated with S1
and S2 images to create a 10-m resolution, wall-to-wall CHM (Schwartz
et al., 2023, 2024). Using these poplar plantation maps and a
poplar-specific yield table, growing stock volume (GSV), aboveground
biomass (AGB), and carbon stock (CS) were estimated across all
plantations.
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2. Materials
2.1. Survey area

The survey area is the Northern Italy Padan Plain (45° N; 10° E),
where most Italian agroforestry plantations are located (Corona et al.,
2020; D’Amico et al., 2021). The Po Valley is the largest river basin in
Italy. It is highly populated and represents the most important economic
area of Italy. The study was conducted in 330,000 ha of agricultural
areas in five administrative Regions, distinguished by various crops,
horticultural practices, and forest tree crops (Fig. 1). Specifically,
plantations of specialized poplar, other broadleaf trees, polycyclic and
sporadic broadleaf trees coppice, and a few coniferous stands are
present.

2.2. Remote sensing data

2.2.1. Sentinel-1

S1 is a SAR mission operating in the C-band, consisting of two
Sentinel satellites (S1A and S1B), launched by the European Space
Agency (ESA) in 2014 and 2016, respectively, with a 12-day repeat cycle
in a sun-synchronous orbit.

We utilized Ground Range Detected (GRD) scenes with dual-band
cross-polarization (Vertical-Vertical and Vertical-Horizontal bands at
10-m resolution). The S1 toolbox, which includes radiometric calibra-
tion, terrain orthorectification, and thermal noise removal, was used to
preprocess these scenes in the Google Earth Engine (GEE) cloud
computing platform (Gorelick et al., 2017). The S1 dataset provides
backscattering coefficients (dB), which quantify the microwave radia-
tion reflected back towards the radar system after being emitted.

On the GEE platform, we selected all images from the survey area
over a five-month period in 2021 (from May 1, 2021, to October 1,
2021). Images from the ascending and descending orbits were divided
by computing the median of the pixels in the image time series. The
median is minimally sensitive to extreme values, reducing the impact of
moisture effects in soil and vegetation that might be present in raw S1
data. Four 10 m resolution composites were created, two in VV and VH,
ascending and descending, respectively, and scaled to a range of 0-1 to
match the S2 input data’s range of values (Schwartz et al., 2024).
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2.2.2. Sentinel-2

S1 and S2’s mission is included in the ESA Copernicus Earth Obser-
vation programme. The two S2 satellites (nowadays the mission includes
the third operational Sentinel-2C satellite not used here) feature a wide-
swath width of 290 km, with 13 high spectral resolution bands Multi-
Spectral Imaging (MSI) sensor, and a varying spatial resolution of 10
m, 20 m, and 60 m (Drusch et al., 2012). All images with a processing
level of L2A (i.e., atmospherically corrected surface reflectance images)
from the exact timing as the S1 images (2021-05-01 to 2021-10-01) with
cloud cover of less than 50 % were selected using the cloud mask to
create a per-pixel median composite image in GEE. Spectral bands with
20 m resolution were resampled to 10 m. Finally, to improve the training
of an artificial neural network, the input S2 data were linearly scaled to a
range of values from 0 to 1, similar to S1.

2.2.3. GEDI

The GEDI sensor is mounted on the ISS. It provides 25-m resolution
forest height measurements in tropical and temperate forests (between
latitudes 51.6° N and S), generating eight transects of structural data
(Dubayah et al., 2021; Francini et al., 2022; Vangi et al., 2023a). GEDI
data was available in various products based on preprocessing levels,
where the L1B product corresponded to the energy return waveforms.
Here, as a reference variable to generate a continuous 10-m resolution
height map, the L2A products were used, which provided metrics such as
canopy relative height (RH). Specifically, we used the RH95, which
demonstrated a better correlation with other height sources than RHj g
(Potapov et al., 2021).

In total, to cover the entire survey area in 2021, 1,371,490 pulses
were downloaded from NASA’s EarthDataSearch site from the
GEDIV002 L2A product (Dubayah et al., 2021). Some of these were
excluded due to atmospheric reasons, filtering out appropriate flags such
as quality_flag set to zero. (2) toploc, botloc, or num_detectedmodes,
RH; o provided metrics had a null value (Fig. 1).

The Train, Validation, and Test datasets were subsequently created
by spatially separating these GEDI pulse traces. Specifically, the
653,100 km? tiles that covered the survey area were randomly split into
453 Train tiles, 114 Validation tiles, and 86 Test tiles, representing 70 %,
17 %, and 13 % of the GEDI footprints, respectively. We used the train
tiles to train the model (See Section 3.1), the validation tiles to monitor

450

CHM (m)

36

Fig. 1. GEDI RH95 pulses overview and survey area tiles.
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the model performances during the training phase, and the test tiles to
carry out a final assessment of the model performance. As ground-truth
reference data were available for this study area (Section 2.4), we did
not use these test tiles in the results part of this study.

2.3. Global canopy height model maps

To evaluate the quality of our U-Net CHM model, we compared tree
heights with those from three global height maps developed in inde-
pendent studies (Lang et al., 2023; Potapov et al., 2021; Tolan et al.,
2024). Maps from Potapov et al. (2021), Lang et al. (2023), and Tolan
et al. (2024) are based on optical data and GEDI pulse. Using Landsat-8
data to infer tree height from GEDI pulses via a bagged regression trees
ensemble approach, Potapov et al. (2021) provided a global CHM for
2019 at a 30-m resolution (https://glad.umd.edu/dataset/gedi/). Lang
et al. (2023) created a 2020 global wall-to-wall canopy height map at a
scale of 10-m by using S2 data to calculate canopy height from GEDI
footprints using a deep fully convolutional network (https://langnico.
github.io/globalcanopyheight/). Meanwhile, Tolan et al. (2024)
employed self-supervised learning and vision transformer approaches,
utilizing Maxar high-resolution optical imagery calibrated with GEDI
data and airborne LiDAR to produce a 1-m high-resolution CHM map
(https://gee-community-catalog.org/projects/meta_trees/).

2.4. Reference data

2.4.1. Field truth dataset

The field reference data for the survey area was derived from the
third Italian National Forest Inventory (Gasparini et al., 2022) field-
work. For each plot, field-measured data for individual trees are freely
accessible online (https://www.inventarioforestale.org/). Data for 35
circular 530-m? NFI field plots were measured in the survey area of the
poplar plantations. The sample number is due to the random selection of
NFI plots and the small spatial extent of plantations, which comprise
about 1 % of the total Italian forest area (Gasparini et al., 2022). How-
ever, the plot distribution throughout the study area and the diversity in
measured data ensure the proper representation of plantations.

Based on single-tree data measured in the field, the plot average
height was calculated as the average height of the trees with the average
basal area. Aggregate GSV and AGB data were also used to assess the
accuracy of the poplar stock. Despite the NFI reference year 2015,
ground data were acquired between April 2018 and April 2019. The
temporal difference between ground data and predicted map appears to
be sufficiently small. However, due to the high dynamism of poplar
plantations, one plot was excluded from the analysis as it had been
harvested.

In addition, 60 square plots of 50 x 50 m (equivalent to 2500 m?),
with traditional forestry field surveys (such as DBH, tree height, and
associated GSV per individual tree), were conducted between 2020 and
2021 (Chianucci et al., 2021).

2.4.2. Poplar plantation mapping

Poplar plantation polygon reference datasets (reference years 2021
and 2022) were obtained by updating the poplar map of northern Italy,
which was derived from a semi-automatic classification approach using
a fully connected neural network and S2 images (D’Amico et al., 2021).
These datasets were refined through photointerpretation using
high-resolution orthophotos. Precisely, the poplar polygons mapped for
2021 encompassed more than 13,000 plantations, totaling approxi-
mately 30,000 ha. By updating the map to 2022, cut poplar plantations
were also identified, totaling approximately 4000 ha.
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3. Methods
3.1. U-net model

The U-Net model, initially designed for biomedical image segmen-
tation (Ronneberger et al., 2015), is a DL model that belongs to the CNN
category. It comprises a series of convolution operations to extract
relevant features from an image. Its “U” shape is due to an ascending and
descending path that gives the model a multi-scale overview of an
image. Thus, the model can capture both fine-scale features and the
broader general context that contribute to the final prediction. Here, we
adapted the PyTorch version of the U-Net proposed by Milesi (htt
ps://github.com/milesial/PyTorch-UNet) for a regression task
involving S1 and S2 images as predictors and GEDI'’s RH95 heights as
labels, following previous studies (Schwartz et al., 2023). The model’s
encoder—decoder structure with skip connections facilitates the extrac-
tion of multi-scale features. This multi-scale capability is crucial in
capturing fine-scale canopy details and broader contextual information,
thereby enhancing tree height estimation accuracy compared to tradi-
tional deep learning methods. The model parameters from Schwartz
et al. (2023) served as a starting point, and they were then refined
through training on the Train tiles of our survey area, as described in
Section 2.2.3. This training was performed on the train tiles (See Section
2.2.3) using a learning rate of 0.001 with the Adam optimizer (Kingma
and Ba, 2014), implemented in PyTorch. The GEDI footprints located in
the validation tiles were used to follow the model performances outside
of its training area and evaluate the convergence of the training. The test
GEDI footprints were then used to obtain a final evaluation of the
model’s performances.

3.2. Tree height map validation and comparison

To validate the canopy height map, we compared the mean value of
our 10-m pixels that overlap the NFI’s circular plots with a radius of 13
m, which is equivalent to the mean of about 5 pixels. The map accuracy
was compared in terms of MAE and RMSE%, which were calculated as
the percentage of RMSE against the mean official values.

In ~
IMAE:EZI':I ‘y, —Yi |7 1
RMSE = Z?:l(.yi 75,:_)27 2
n

where n is the number of field measured NFI plots, y; is the i-th mean
height associated with the plots and y; is the i-th height predicted by the
tree height map. Our height prediction was also compared with three
different canopy height maps: Potapov et al. (2021), Lang et al. (2023),
and Tolan et al. (2024). For each CHM dataset, the values corresponding
to the spatial extent of the NFI plots were extracted and used for com-
parison, ensuring consistency across datasets and enabling a direct
evaluation against field-based reference measurements.

3.3. Poplar stock estimation and accuracy assessment

The height prediction model provided data for the entire survey area,
including every poplar polygon mapped within it. Accordingly, using
the poplar-specific yield table, the growing stock volume (GSV) for each
plantation stand was estimated. In particular, the equations from Chia-
nucci et al. (2020), which were carried out using terrestrial laser scanner
data from plantations included in our survey area, were used. We tested
all available equations for GSV estimation, finding the best results with
preliminary diameter estimation and then applying the two-entry power
model.
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Although these equations were initially developed for single-tree
measurements, given the homogeneity of poplar plantations and the
standard tree spacing of 36 m? (6 x 6 m) (Corona et al., 2018), we can
quantify DBH and GSV corresponding to 10 m of the final pixel. Next,
GSV estimation was used to estimate AGB (Mg d.m. (dry matter) ha 1)
based on poplar wood basal density as follows:

AGB =GSV x BEF x WBD 5

where GSV is the calculated growing stock volume, BEF (biomass
expansion factor) is the category-specific biomass expansion factor
(dimensionless), and WBD (wood basal density) is the wood basal den-
sity (Mg d.m. m~%). In particular, BEF and WBD are those already
applied by Vangi et al., 2023b, which for poplar plantation stands are
equal to 1.2 and 0.29, respectively. Finally, the 2021 poplar plantation
carbon stocks (CS) (MgC ha~!) were obtained using the default carbon
fraction factor of 0.47 from AGB (IPCC, 2006).

To assess the accuracy of GSV, AGB, and CS poplar plantation esti-
mations, we calculated the RMSE by comparing them with the NFI and
square plot field truth datasets. Since we had the poplar plantation
mappings for the years 2021 and 2022, we were able to identify cut
poplar plantations and thus available wood for industrial activities. For
these plantations, we estimated the central stock values based on GSV,
AGB, and CS maps.
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4. Results
4.1. Canopy height model

The predicted U-Net CHM, trained using S1 and S2 predictors and
sparse GEDI reference data, was produced for the whole study area. Due
to the variability of agroforestry’s spatial and temporal distribution in
agronomic environments, an accurate forest mask is lacking and,
therefore, has not been applied. However, the U-Net CHM visual in-
spection enables the differentiation of agroforestry plantation cover
from other land uses (Fig. 2).

4.1.1. Evaluation with independent datasets

For the 35 NFI plots, the height predictions at the pixel level ranged
between 4.6 and 24 m, with a standard deviation of 5.1 m, while the
original NFI values varied from 4.1 to 27.2 m, with a standard deviation
of 6 m. The comparison between the predicted height and the NFI field
truth dataset yields an R? coefficient of 0.63 (MAE = 2.7 m, RMSE =
22.6 %).

The comparison with the NFI dataset is reported in Fig. 4, where a
strong correlation with our canopy height is evident. Moreover, the most
discordant data are for the oldest INFC plots, acquired in 2018. Thus, as
the estimates refer to 2021, these differences are explained mainly by
the rapid growth of poplars.

4.1.2. Comparison with other canopy height maps

For the U-Net CHM evaluation, we compared the height predictions
with the already available height models of Potapov et al. (2021), Lang
et al. (2023), and Tolan et al. (2024). Typically, forest plantations are
surrounded by non-forested land use, mainly crops. From a visual
comparison, the forest stands of U-Net CHM had higher homogeneity.
Slightly noisier appears to be the product in Lang et al. (2023), pre-
sumably due to a filter applied to the CHM, while in Potapov’s product,

CHM (m)

36

Fig. 2. Wall-to-wall forest canopy height (U-Net CHM) map of Padan Plain for 2021. In the boxes, there are three areas with extensive poplar plantations.
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the borders of the various land uses appear poorly defined, partly
because of the lower spatial resolution. In Tolan et al. (2024), where the
pattern is always recognizable, greater diversity, even within planta-
tions, was evident (Fig. 3).

Additionally, a comparison between the NFI data and the four CHMs
analyzed is presented in Fig. 4. The U-Net CHM exhibits the strongest
relationship, with the highest R? of 0.63, followed by Tolan et al. (2024)
with an R? of 0.49, which reveals an overestimation of values. In
contrast, the CHM of Lang et al. (2023) yields an R? of 0.16, whereas

Ortophoto U-Net CHM

d

TU1.000 2.000 m

[ S

Tolan et al.
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Potapov et al. (2021) achieve an R? of 0.07. In terms of RMSE, the U-Net
CHM reached 3.7 m, corresponding to 22.6 % of the mean observed
height, while Tolan et al. (2024), Lang et al. (2023), and Potapov et al.
(2021) reached 9.9, 5.9, and 12.8m, respectively (corresponding to 60.2,
35.9, and 78.2 % of the measured height, respectively).

4.2. Poplar stocks

Considering the U-Net CHM accuracy, we used it to estimate the

Lang et al. Potapov et al.

CHM (m)

0 30

Fig. 3. Visual comparison at different scale of U-Net CHM data (10 m resolution) and three other products Tolan et al. (2024) (2024 - 1 m resolution), Lang et al.
(2023) (2021 - 10 m resolution), and Potapov et al. (2021) (2019 - 30 m resolution).
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poplar plantation stocks. Estimates of GSV and AGB were compared with
ground truth data measured in the NFI and square areas (Figs. 5 and 6).
The CS was excluded from the comparison since it is derived directly
from the AGB values. Similarly, we focused on GSV for comparison with
square plots, as AGB was derived from GSV values by applying Equation
(5). A comparison with DBH data, derived from U-Net CHM using
Equation (3), was also included.

Comparison with NFI data for DBH, GSV, and AGB yields RMSE
values of 30.7 %, 46.2 %, and 63.2 %, respectively (Fig. 5). The com-
parison reveals a relatively strong relationship for GSV, while AGB ap-
pears to be slightly underestimated.

Comparison with independent field truth data in the 50 x 50 cells
shows consistent values for DBH and GSV, with RMSE values of 19 %
and 37.7 %, respectively (Fig. 6).

From the extraction of the stocks on the poplar stands mapped in the
year 2021 (Fig. 7), the total GSV, AGB and C stock were 1,956,588.1 m?,
703,589.1 Mg and 351,794.5 MgC, respectively, while the average GSV,
AGB and C stock were 66.28 m> ha~!, 23.83 Mg ha™! and 11.92 MgC
ha™, respectively.

We also extracted the three stocks within the harvested poplar stands
between 2021 and 2022 to calculate the average and total harvested

stock for that year. For a total harvested area of 4372 ha, we obtain a
total harvested GSV of 36,9012.5 m>, corresponding to 132,697 Mg of
AGB and 66,348.52 MgC of C stock. The average GSV removed within
the stands was 68.24 m® ha™!, corresponding to 24.53 Mg ha! and
12.26 MgC ha™! of AGB and C stock, respectively.

5. Discussion

This study deepens our understanding of the poplar plantations, the
leading supplier of Italian wood products for industrial use. For esti-
mating poplar stocks, we used mapping data for poplar plantations in
northern Italy for 2021 and 2022. Although this data was supported by
semi-automatic mapping approaches (D’Amico et al., 2021), it still
required a time-consuming process of photointerpretation. The U-Net
CHM we developed in this study was applied for the first time to monitor
poplar plantations by integrating Sentinel and GEDI data, demonstrating
its usefulness for advancing knowledge in agroforestry systems, which,
with further research, could also lead to more detailed mapping.

Poplar plantations are dynamic systems, showing both spatial and
growth variations from year to year. Comparisons with NFI data confirm
the high dynamism of these plantations. The most significant biases,
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Fig. 7. Poplar plantation GSV map of Padan Plain at 10 m resolution for 2021. In the boxes, there are three areas with extensive poplar plantations.

typically overestimations, were observed in plots measured in 2018.
These discrepancies may be partially attributed to natural growth be-
tween the NFI survey and the development of the U-Net CHM for the
nominal year of 2021. Notably, the growth rates of poplar plantations in
the Po Valley, expressed as mean annual increments, are among the
highest in temperate zones, potentially exceeding 25 m> ha™! yr!
(Spinelli et al., 2011; Pra et al., 2019). The new Italian NFI is expected to
provide annual estimates, enhancing the temporal resolution of forest
data in Italy. However, the sparse and systematic distribution of NFI
field plots remains poorly suited for monitoring intensively managed
and spatially clustered systems such as poplar plantations, highlighting
the need for complementary remote sensing approaches (D’Amico et al.,
2025, in press).

According to our maps, an estimated 380,000 m® of timber were
harvested and made available to the market in 2021. While this amount
is significant, it is noticeably lower than the figures reported in other
studies. Considering the growth of the Italian poplar cultivation sector in
recent years, our data align with Zanuttini et al. (2021), who reported
Italian poplar plywood production for 2017 at approximately 270,000
mS.

Accurate spatial data on growing stock, biomass and carbon are
essential for guiding forest management practices, including harvest
scheduling, yield forecasting, and resource allocation (Herold et al.,
2019). Moreover, reliable estimates of plantation stocks are critical for
shaping evidence-based policies at national and regional levels, partic-
ularly in the context of land-use planning, timber supply chain optimi-
zation, and the sustainable development of the forest-based bioeconomy
(Corona et al., 2018).

LiDAR data are recognized as essential for quantifying forest stocks
(Nilsson et al., 2017; Chirici et al., 2020; D’Amico et al., 2022). How-
ever, frequent airborne LiDAR surveys remain expensive. For example,
wall-to-wall airborne laser scanning data in Italy is still unavailable. This
lack of data and the derived forest variables map have created

limitations for validating the estimated CHM and poplar stocks. Liu et al.
(2019) mapped the canopy height of poplar plantations, achieving an
RMSE of 1.58 m, despite the field validation samples having a maximum
height of only approximately 10 m. This study utilized the ZY3-02 sat-
ellite, which was specifically developed for China’s civil space infra-
structure (Xu et al., 2017). However, Chinese Earth observation
satellites remain underutilized globally, with vegetation-related appli-
cations primarily driven by sensors on American or European satellites
(Zhang et al., 2023). To address these limitations, integrating Sentinel
data with satellite LIDAR data can provide more detailed and accurate
information. Our results confirm the significant potential of integrating
multiple data sources for enhanced mapping.

Since this study focused on estimating poplar plantation stocks, we
selected three international CHMs for comparison with the U-Net CHM
we produced. Among the many available CHMs (such as Pauls et al.,
2024; Astola et al., 2021; Fayad et al., 2024), we used the datasets from
Potapov et al. (2021), Lang et al. (2023), and the recent dataset from
Tolan et al. (2024), which, with a 1 m resolution, represents a new
generation of global height models.

A comparative analysis of the U-Net CHM and the three additional
canopy height maps available across the survey area highlighted the
potential of our product. Visual inspection in six representative contexts
(Fig. 3) demonstrated that the U-Net CHM effectively delineated the
boundaries of poplar plantations, with greater consistency and spatial
clarity. The CHM by Lang et al. (2023), while comparable in resolution
(10 m), exhibited more noise outside plantation areas but provided a
relatively accurate representation of low-stature vegetation, tending to
overestimate shorter canopies and underestimate taller ones. In
contrast, the coarser-resolution CHM by Potapov et al. (2021) (30 m)
lacked spatial detail and was less effective in capturing fine-scale height
variation. The high-resolution product by Tolan et al. (2024) (1 m)
showed clear separation between poplar plantation and adjacent areas
but revealed internal variability within plantations that was not always
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consistent with their structural homogeneity. These visual patterns
generally align with those reported by Moudry et al. (2024).

However, our quantitative analysis produced contrasting results:
both Potapov et al. (2021) and Tolan et al. (2024) showed a systematic
overestimation of canopy height in our study area, while Lang et al.
(2023) yielded comparatively lower errors. These discrepancies likely
stem from differences in forest type and context. Moudry et al. (2024)
evaluated CHMs across diverse natural and semi-natural forests around
the globe, whereas our study focused on intensively managed poplar
plantations in the Po Valley, characterized by short rotation cycles, rapid
growth, and structural homogeneity. Such conditions make this forest
system particularly sensitive to spatial resolution and temporal align-
ment between remote sensing data and reference observations, under-
scoring the importance of context-specific CHM validation approaches.

Given the high dynamism of poplar plantation management, the
reference year of the different datasets must be considered. Referring to
the NFI data, mainly surveyed in 2018, the dataset of Potapov et al.
(2021), with a reference year of 2019, is the most consistent. However, it
shows an evident overestimation, with the worst RMSE value of 78.2 %.
The CHM from Tolan et al. (2024), derived from Maxar satellite images
covering the period from 2018 to 2020, shows a clear overestimation of
height, with an RMSE of 60.2 %. The CHM from Lang et al. (2023), with
a reference year of 2020, yielded RMSE values of 35.9 %, whereas the
U-Net CHM, with a reference year of 2021, achieved the lowest RMSE of
22.6 %. Although we were aware of the survey dates for the NFI plots
and the reference years for the CHMs, we avoided adding uncertainty
factors by harmonizing the analyses to a common year using the poplar
increment (Schelhaas et al., 2018).

At the national level, biomass datasets are also available. Giannetti
et al. (2022) developed AGB maps at a 23 m resolution based on the
second Italian NFI with a reference year of 2005. At the global scale,
several maps have been developed, such as the biomass map at a 300 m
resolution for 2010 by Spawn et al. (2020) or the product by Santoro
et al. (2021) for 2010 at a 1 ha resolution. The GEDI L4B product, based
on data acquired between 2019 and 2021, provides a global AGB map at
a 1 km resolution (Duncanson et al., 2022). Biomass maps have also
been produced at the European scale, based on various input data and
modeling approaches. Avitabile et al. (2024) recently released maps of
forest area, biomass stocks, and their availability for wood supply in
2020, including statistics on gross and net volume increments from 2010
to 2020. However, several studies have highlighted differences in esti-
mates (Araza et al., 2023) and systematic deviations from ground
reference data, mainly due to their limited global coverage (Duncanson
et al., 2019). Therefore, locally developed maps, such as our U-Net CHM,
validated with independent datasets, remain the most reliable for local
studies (Giannetti et al., 2023).

Satellite LiDAR data, particularly from the GEDI and ICESat-2 mis-
sions, are now fundamental sources of information (Guerra-Hernandez
et al., 2024; Varvia et al., 2024). The upcoming EDGE mission holds
promise for advancing our understanding of complex forest systems,
such as poplar plantations and agroforestry. While these data are
beneficial and promising, they do have limitations. Products developed
by integrating GEDI data with other remote sensing data can be affected
by the GEDI measurement uncertainty of approximately 10-m in
determining the ground location (Dubayah et al., 2020). Specifically,
GEDI footprints near forest boundaries may capture bare ground outside
the forest and vice versa (Schwartz et al., 2024). Moreover, the survey
area has a relatively flat environment; however, in more morphologi-
cally complex regions, such as Italian forests, developing similarly ac-
curate CHMs will require additional efforts.

6. Conclusion
The renewed prominence of agroforestry in the context of climate

change mitigation and Green Deal policies is well-documented in a
growing body of recent scholarly literature. In Italy, research efforts
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have primarily focused on the inventory of poplar plantations (Marcelli
et al., 2020) and the development of mapping methodologies (D’ Amico
et al., 2021a). Additional studies have addressed the estimation of tree
structural attributes (Chianucci et al., 2020; Puletti et al., 2021; Romano
et al., 2024) and the assessment of tree stress conditions (Tauro et al.,
2022).

The primary objective of this study was to estimate the spatial dis-
tribution of poplar plantation stocks in the Padan Plain, northern Italy.
We generated maps of growing stock volume, aboveground biomass,
and carbon stocks using a canopy height model developed through a
deep learning U-Net framework. This model utilized multi-band imagery
from S1 and S2 as inputs to predict tree height derived from GEDI pulse
waveforms. The U-Net model, previously successfully applied in France
(Schwartz et al.,, 2023, 2024), demonstrated high efficiency, out-
performing other height estimation models. Specifically, the U-Net--
derived canopy height model yielded an RMSE% of 22.6 % compared
with NFI plot data.

Our estimates underscore the importance of poplar wood for indus-
trial needs. Specifically, for 2021, we estimated approximately
1,956,600 m® of timber, corresponding to 352,000 Mg of carbon stored.
Harvest estimates for 2022 indicate that poplar production in northern
Italy totaled approximately 370,000 m?, equivalent to over 130,000 Mg
of AGB and 66,000 Mg of C stock.

Given the continuous availability of S1 and S2 data, the generated
canopy height map can be updated on an annual basis to track changes
in tree height. Consequently, the integration of Earth observation data
into national forest monitoring systems enables the effective yearly
monitoring of poplar plantation stocks.
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