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A B S T R A C T

Agroforestry is a strategic asset for combating climate change and mitigating the environmental impacts of 
agricultural intensification, offering a nature-based solution for enhancing landscape resilience. In particular, 
poplar plantations contribute to the development of ecological networks within homogeneous agricultural 
landscapes, while also producing high-demand plywood and sequestering CO2 in durable manufactured goods. 
Monitoring short-rotation poplar plantations requires frequent updates, which are infeasible with conventional 
National Forest Inventories (NFIs). Remote sensing (RS) has emerged as a highly effective tool for monitoring the 
structural variables of poplar plantations. This study aims to estimate the carbon stocks of poplar plantations in 
the Padan Plain, which spans approximately 46,000 km2 in northern Italy. To achieve this, we developed a 10m 
high-resolution canopy height model (CHM) using a deep learning U-Net approach, with Sentinel-1 and Sentinel- 
2 multi-band imagery as predictors for GEDI waveforms derived tree height. The U-Net CHM for 2021 was 
evaluated with external validation data from NFI plots, achieving a mean absolute error of 2.6 m. Using annual 
poplar plantations data in the survey area, along with a poplar-specific yield table derived from terrestrial laser 
scanning, we applied the U-Net CHM to predict key forestry variables, including diameter at breast height (DBH), 
growing stock volume (GSV), aboveground biomass (AGB), and carbon stock (CS) in all stands. Results were 
compared with external validation data from NFI, yielding RMSE values of 30.7 %, 46.2 %, and 63.2 % for DBH, 
GSV, and AGB, respectively. Meanwhile, independent field surveys produced RMSE values of 19 % and 37.7 % 
for DBH and GSV, respectively. The average GSV estimated was 70 m3 ha− 1, while total CS were 12 MgC ha− 1. 
Based on poplar plantation maps for 2021 and 2022, we estimated the total harvested GSV of poplar trees to be 
370,000 m3, equal to 66,000 MgC. The corresponding average harvested area was 1.5 ha, with an average yield 
of 130 m3 per hectare. The integration of multiple RS datasets with advanced machine learning techniques fa
cilitates the effective monitoring of dynamic poplar plantations, for both mapping purposes and quantifying key 
forest variables relevant to climate change mitigation, such as carbon stocks.

1. Introduction

Agroforestry refers to land-use systems in which trees are grown in 
combination with agriculture on the same land (European Commission, 
2014). These systems have gained renewed attention in Europe as a 

strategic asset for addressing climate change and mitigating the envi
ronmental impacts of agricultural intensification while also providing a 
nature-based solution for enhancing landscape resilience (Golicz et al., 
2022; FOREST EUROPE, 2018). However, not all EU countries adopt the 
same definition of agroforestry (Golicz et al., 2022). As a result, 
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practices considered agroforestry in one country or region may be 
classified as either forestry or agricultural activities in other EU coun
tries and regions (Burgess and Rosati, 2018). Notably, the role of agro
forestry in carbon sequestration remains understudied (Corona et al., 
2023; C-FARMs, 2023).

The Padan Plain in northern Italy is one of Europe’s most intensively 
cultivated agricultural regions (D’Amico et al., 2021; Romano et al., 
2024). Trees play a crucial role in mitigating pollutants and improving 
environmental quality in these agricultural landscapes. This mitigation 
function is partly fulfilled through agroforestry activities, particularly 
those focused on fruit and timber production. Poplar (Populus spp.) is 
critical in this region. As a fast-growing species, it is widely cultivated in 
specialized plantations for timber production, with rotations of 10–12 
years for plywood production (Corona et al., 2024; Nervo et al., 2024). 
Poplar plywood is in high demand across various industries, making 
poplar plantations strategically important as a nature-based solution at 
the EU level (Freer-Smith et al., 2019). The rapid growth of poplar en
ables the storage of significant amounts of CO2 over a short period, 
enhancing soil sequestration (Antoniella et al., 2024; Feng et al., 2020), 
creating ecological networks, and mitigating climate change by locking 
carbon in durable products. Additionally, poplar plantations help reduce 
the pressure on natural forests by meeting the global demand for forest 
products (Feng et al., 2020; Freer-Smith et al., 2019; Łukaszkiewicz 
et al., 2024).

However, these plantations are highly dynamic, and accurate, reli
able, and timely monitoring updates are crucial for managing them 
effectively (Bergante, 2022; D’Amico et al., 2021). In particular, canopy 
characteristics such as height are considered crucial (Romano et al., 
2024), as they enable a range of assessments related to ecosystem ser
vices (Abelleira et al., 2016), carbon stock quantification (Karna et al., 
2015), wildlife management (Hyde et al., 2006), and sustainable forest 
management (Wulder et al., 2008). Canopy height is directly correlated 
with both ecological and site-specific indicators (e.g., site quality, 
climate conditions), as well as stand variables such as stand age, primary 
productivity, above ground biomass, Leaf Area Index (LAI), and canopy 
cover (Torres de Almeida et al., 2022).

Modern land monitoring systems are based on proximal and remote 
sensing technologies, enabling the investigation of tree canopy charac
teristics in a robust and replicable manner, which significantly improves 
monitoring compared to traditional fieldwork (Romano et al., 2024). 
Different technologies are suitable such as terrestrial cameras (Romano 
et al., 2024; Chianucci et al., 2020), UAV photogrammetric data 
(Romano et al., 2024; Chianucci et al., 2020), terrestrial laser scanning 
(Puletti et al., 2021), airborne laser scanning (Tompalski et al., 2019), 
and satellite stereo mapping (Liu et al., 2019). However, the limited 
range of technologies, such as UAVs, terrestrial LiDAR (Light Detection 
and Ranging), and cameras, restricts their effectiveness in farm-level 
investigations. For large-scale assessments, these tools are often inade
quate. At the same time, options like LiDAR from Airborne Laser Scan
ning (although capable of covering vast areas) are typically 
cost-prohibitive for regular monitoring, even on an annual basis, to 
track plantation dynamics. A recent study by Liu et al. (2019) addressed 
this limitation, creating a canopy height map in flat areas using stereo 
and multispectral data from the Chinese satellite ZY3-02. However, 
these sensors are mainly only locally available nowadays, severely 
limiting their application. Understanding canopy height variation is 
essential for polar plantation management, especially in the Po Valley, 
where the increased frequency and severity of drought events related to 
climate change potentially compromises the canopy structure and 
growth rate of poplar plantations (Romano et al., 2022; Baronetti et al., 
2022).

Emerging opportunities arise using satellite data. Among these, 
Sentinel-1 (S1) radar data, Sentinel-2 (S2) multispectral optical data, 
and spaceborne LiDAR data from the Global Ecosystem Dynamics 
Investigation (GEDI) mission are particularly promising, as they were 
developed specifically for land and environmental monitoring and are 

freely available. The two S1 polar-orbiting satellites provide global 
coverage of Synthetic Aperture Radar (SAR) operating in the C-band. 
This wavelength proves useful due to its greater dynamic range of 
backscattering (Dalponte et al., 2023). Whilst, the S2 mission provides 
high spatial resolution optical data, featuring bands with a resolution of 
up to 10 m and a dense time series, offering high spectral resolution with 
ten bands useful for vegetation investigation. The revisit time varies 
from two to five days, depending on the latitude. Notably, GEDI was the 
first LiDAR satellite mission, specifically designed to recover vertical 
vegetation structures and collect innovative data on vegetation since 
April 2019 aboard the International Space Station (ISS). Providing 25-m 
resolution forest height measurements in tropical and temperate forests 
(51.6◦ N to 51.6◦ S latitude). GEDI is equipped with a waveform LiDAR 
that consists of three lasers, generating eight transects (beams) of forest 
structural information.

Although all sensor data have been used to create various forest- 
related products, integrating multiple sensor data appears to be the 
most effective approach. Accordingly, GEDI forest height measurements 
have been combined with Landsat data to produce a global forest canopy 
height model (CHM) map with a 30-m spatial resolution for 2019 
(Potapov et al., 2021). Lang et al. (2023) generated a global canopy 
height map with a 10-m resolution predicting the GEDI RH98 (relative 
height, i.e., the height below which 98 % of the returned pulse energy is 
received) footprint based on S2 imagery. Pauls et al. (2024) used S1 and 
S2 cloud-free data, along with GEDI RH100, in a fully convolutional 
neural network to generate high-resolution (10 m) global-scale CHM. 
Other studies have developed regional 10-m canopy height models 
(CHMs) using S2 and aerial LiDAR data (Astola et al., 2021; Fayad et al., 
2024). Recently, GEDI data were combined with LiDAR data to train 
self-supervised learning and vision transformer models based on Maxar 
optical imagery, producing high-resolution (1 m) CHM (Tolan et al., 
2024).

To monitor the changes in poplar plantations — not only for creating 
plantation maps but also for quantifying key variables essential for 
assessing the impact of climate change mitigation, such as carbon stock 
— the integration of multiple remote sensing datasets which providing 
timely, comprehensive and frequently updated data together with 
advanced machine learning approaches are crucial. Deep learning (DL) 
techniques have proven particularly promising in this context. Among 
these, Convolutional Neural Networks (CNNs) offer powerful tools that 
enable remote sensing research to handle large volumes of training data, 
resulting in more accurate outcomes, particularly for image interpreta
tion tasks. CNNs can learn multi-scale image features, such as texture, 
which can be used for making predictions (Dalagnol et al., 2022; Ill
arionova et al., 2022).

Several datasets were available in our extensive survey area. First, 
annual poplar plantation maps were developed through semi-automatic 
classification of remote sensing (RS) images, which were then refined 
through photointerpretation of high-resolution orthophotos (D’Amico 
et al., 2021). Second, an allometric equation for poplar tree volume was 
developed using terrestrial LiDAR data (Chianucci et al., 2020). How
ever, combining these datasets with sophisticated new methods has yet 
to be fully explored.

In this study, a DL model that leverages GEDI’s height data as a 
reference to estimate poplar plantation carbon stocks was implemented.

This represents the first application of a U-Net architecture to map 
poplar plantations, in which GEDI height data were integrated with S1 
and S2 images to create a 10-m resolution, wall-to-wall CHM (Schwartz 
et al., 2023, 2024). Using these poplar plantation maps and a 
poplar-specific yield table, growing stock volume (GSV), aboveground 
biomass (AGB), and carbon stock (CS) were estimated across all 
plantations.
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2. Materials

2.1. Survey area

The survey area is the Northern Italy Padan Plain (45◦ N; 10◦ E), 
where most Italian agroforestry plantations are located (Corona et al., 
2020; D’Amico et al., 2021). The Po Valley is the largest river basin in 
Italy. It is highly populated and represents the most important economic 
area of Italy. The study was conducted in 330,000 ha of agricultural 
areas in five administrative Regions, distinguished by various crops, 
horticultural practices, and forest tree crops (Fig. 1). Specifically, 
plantations of specialized poplar, other broadleaf trees, polycyclic and 
sporadic broadleaf trees coppice, and a few coniferous stands are 
present.

2.2. Remote sensing data

2.2.1. Sentinel-1
S1 is a SAR mission operating in the C-band, consisting of two 

Sentinel satellites (S1A and S1B), launched by the European Space 
Agency (ESA) in 2014 and 2016, respectively, with a 12-day repeat cycle 
in a sun-synchronous orbit.

We utilized Ground Range Detected (GRD) scenes with dual-band 
cross-polarization (Vertical-Vertical and Vertical-Horizontal bands at 
10-m resolution). The S1 toolbox, which includes radiometric calibra
tion, terrain orthorectification, and thermal noise removal, was used to 
preprocess these scenes in the Google Earth Engine (GEE) cloud 
computing platform (Gorelick et al., 2017). The S1 dataset provides 
backscattering coefficients (dB), which quantify the microwave radia
tion reflected back towards the radar system after being emitted.

On the GEE platform, we selected all images from the survey area 
over a five-month period in 2021 (from May 1, 2021, to October 1, 
2021). Images from the ascending and descending orbits were divided 
by computing the median of the pixels in the image time series. The 
median is minimally sensitive to extreme values, reducing the impact of 
moisture effects in soil and vegetation that might be present in raw S1 
data. Four 10 m resolution composites were created, two in VV and VH, 
ascending and descending, respectively, and scaled to a range of 0–1 to 
match the S2 input data’s range of values (Schwartz et al., 2024).

2.2.2. Sentinel-2
S1 and S2’s mission is included in the ESA Copernicus Earth Obser

vation programme. The two S2 satellites (nowadays the mission includes 
the third operational Sentinel-2C satellite not used here) feature a wide- 
swath width of 290 km, with 13 high spectral resolution bands Multi- 
Spectral Imaging (MSI) sensor, and a varying spatial resolution of 10 
m, 20 m, and 60 m (Drusch et al., 2012). All images with a processing 
level of L2A (i.e., atmospherically corrected surface reflectance images) 
from the exact timing as the S1 images (2021-05-01 to 2021-10-01) with 
cloud cover of less than 50 % were selected using the cloud mask to 
create a per-pixel median composite image in GEE. Spectral bands with 
20 m resolution were resampled to 10 m. Finally, to improve the training 
of an artificial neural network, the input S2 data were linearly scaled to a 
range of values from 0 to 1, similar to S1.

2.2.3. GEDI
The GEDI sensor is mounted on the ISS. It provides 25-m resolution 

forest height measurements in tropical and temperate forests (between 
latitudes 51.6◦ N and S), generating eight transects of structural data 
(Dubayah et al., 2021; Francini et al., 2022; Vangi et al., 2023a). GEDI 
data was available in various products based on preprocessing levels, 
where the L1B product corresponded to the energy return waveforms. 
Here, as a reference variable to generate a continuous 10-m resolution 
height map, the L2A products were used, which provided metrics such as 
canopy relative height (RH). Specifically, we used the RH95, which 
demonstrated a better correlation with other height sources than RH100 
(Potapov et al., 2021).

In total, to cover the entire survey area in 2021, 1,371,490 pulses 
were downloaded from NASA’s EarthDataSearch site from the 
GEDIv002 L2A product (Dubayah et al., 2021). Some of these were 
excluded due to atmospheric reasons, filtering out appropriate flags such 
as quality_flag set to zero. (2) toploc, botloc, or num_detectedmodes, 
RH100 provided metrics had a null value (Fig. 1).

The Train, Validation, and Test datasets were subsequently created 
by spatially separating these GEDI pulse traces. Specifically, the 
653,100 km2 tiles that covered the survey area were randomly split into 
453 Train tiles, 114 Validation tiles, and 86 Test tiles, representing 70 %, 
17 %, and 13 % of the GEDI footprints, respectively. We used the train 
tiles to train the model (See Section 3.1), the validation tiles to monitor 

Fig. 1. GEDI RH95 pulses overview and survey area tiles.
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the model performances during the training phase, and the test tiles to 
carry out a final assessment of the model performance. As ground-truth 
reference data were available for this study area (Section 2.4), we did 
not use these test tiles in the results part of this study.

2.3. Global canopy height model maps

To evaluate the quality of our U-Net CHM model, we compared tree 
heights with those from three global height maps developed in inde
pendent studies (Lang et al., 2023; Potapov et al., 2021; Tolan et al., 
2024). Maps from Potapov et al. (2021), Lang et al. (2023), and Tolan 
et al. (2024) are based on optical data and GEDI pulse. Using Landsat-8 
data to infer tree height from GEDI pulses via a bagged regression trees 
ensemble approach, Potapov et al. (2021) provided a global CHM for 
2019 at a 30-m resolution (https://glad.umd.edu/dataset/gedi/). Lang 
et al. (2023) created a 2020 global wall-to-wall canopy height map at a 
scale of 10-m by using S2 data to calculate canopy height from GEDI 
footprints using a deep fully convolutional network (https://langnico. 
github.io/globalcanopyheight/). Meanwhile, Tolan et al. (2024) 
employed self-supervised learning and vision transformer approaches, 
utilizing Maxar high-resolution optical imagery calibrated with GEDI 
data and airborne LiDAR to produce a 1-m high-resolution CHM map 
(https://gee-community-catalog.org/projects/meta_trees/).

2.4. Reference data

2.4.1. Field truth dataset
The field reference data for the survey area was derived from the 

third Italian National Forest Inventory (Gasparini et al., 2022) field
work. For each plot, field-measured data for individual trees are freely 
accessible online (https://www.inventarioforestale.org/). Data for 35 
circular 530-m2 NFI field plots were measured in the survey area of the 
poplar plantations. The sample number is due to the random selection of 
NFI plots and the small spatial extent of plantations, which comprise 
about 1 % of the total Italian forest area (Gasparini et al., 2022). How
ever, the plot distribution throughout the study area and the diversity in 
measured data ensure the proper representation of plantations.

Based on single-tree data measured in the field, the plot average 
height was calculated as the average height of the trees with the average 
basal area. Aggregate GSV and AGB data were also used to assess the 
accuracy of the poplar stock. Despite the NFI reference year 2015, 
ground data were acquired between April 2018 and April 2019. The 
temporal difference between ground data and predicted map appears to 
be sufficiently small. However, due to the high dynamism of poplar 
plantations, one plot was excluded from the analysis as it had been 
harvested.

In addition, 60 square plots of 50 × 50 m (equivalent to 2500 m2), 
with traditional forestry field surveys (such as DBH, tree height, and 
associated GSV per individual tree), were conducted between 2020 and 
2021 (Chianucci et al., 2021).

2.4.2. Poplar plantation mapping
Poplar plantation polygon reference datasets (reference years 2021 

and 2022) were obtained by updating the poplar map of northern Italy, 
which was derived from a semi-automatic classification approach using 
a fully connected neural network and S2 images (D’Amico et al., 2021). 
These datasets were refined through photointerpretation using 
high-resolution orthophotos. Precisely, the poplar polygons mapped for 
2021 encompassed more than 13,000 plantations, totaling approxi
mately 30,000 ha. By updating the map to 2022, cut poplar plantations 
were also identified, totaling approximately 4000 ha.

3. Methods

3.1. U-net model

The U-Net model, initially designed for biomedical image segmen
tation (Ronneberger et al., 2015), is a DL model that belongs to the CNN 
category. It comprises a series of convolution operations to extract 
relevant features from an image. Its “U” shape is due to an ascending and 
descending path that gives the model a multi-scale overview of an 
image. Thus, the model can capture both fine-scale features and the 
broader general context that contribute to the final prediction. Here, we 
adapted the PyTorch version of the U-Net proposed by Milesi (htt 
ps://github.com/milesial/PyTorch-UNet) for a regression task 
involving S1 and S2 images as predictors and GEDI’s RH95 heights as 
labels, following previous studies (Schwartz et al., 2023). The model’s 
encoder–decoder structure with skip connections facilitates the extrac
tion of multi-scale features. This multi-scale capability is crucial in 
capturing fine-scale canopy details and broader contextual information, 
thereby enhancing tree height estimation accuracy compared to tradi
tional deep learning methods. The model parameters from Schwartz 
et al. (2023) served as a starting point, and they were then refined 
through training on the Train tiles of our survey area, as described in 
Section 2.2.3. This training was performed on the train tiles (See Section 
2.2.3) using a learning rate of 0.001 with the Adam optimizer (Kingma 
and Ba, 2014), implemented in PyTorch. The GEDI footprints located in 
the validation tiles were used to follow the model performances outside 
of its training area and evaluate the convergence of the training. The test 
GEDI footprints were then used to obtain a final evaluation of the 
model’s performances.

3.2. Tree height map validation and comparison

To validate the canopy height map, we compared the mean value of 
our 10-m pixels that overlap the NFI’s circular plots with a radius of 13 
m, which is equivalent to the mean of about 5 pixels. The map accuracy 
was compared in terms of MAE and RMSE%, which were calculated as 
the percentage of RMSE against the mean official values. 

MAE=
1
n
∑n

i=1
|yi − ŷi |, 1 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

, 2 

where n is the number of field measured NFI plots, yi is the i-th mean 
height associated with the plots and ŷi is the i-th height predicted by the 
tree height map. Our height prediction was also compared with three 
different canopy height maps: Potapov et al. (2021), Lang et al. (2023), 
and Tolan et al. (2024). For each CHM dataset, the values corresponding 
to the spatial extent of the NFI plots were extracted and used for com
parison, ensuring consistency across datasets and enabling a direct 
evaluation against field-based reference measurements.

3.3. Poplar stock estimation and accuracy assessment

The height prediction model provided data for the entire survey area, 
including every poplar polygon mapped within it. Accordingly, using 
the poplar-specific yield table, the growing stock volume (GSV) for each 
plantation stand was estimated. In particular, the equations from Chia
nucci et al. (2020), which were carried out using terrestrial laser scanner 
data from plantations included in our survey area, were used. We tested 
all available equations for GSV estimation, finding the best results with 
preliminary diameter estimation and then applying the two-entry power 
model. 
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DBH= log

⎛

⎜
⎝

(27.61− h)+1.3
h×5.97 − 1.3 × 5.97

− 0.095
, 3 

GSV = exp(− 7.74)DBH2.11 × h0.09, 4 

Although these equations were initially developed for single-tree 
measurements, given the homogeneity of poplar plantations and the 
standard tree spacing of 36 m2 (6 × 6 m) (Corona et al., 2018), we can 
quantify DBH and GSV corresponding to 10 m of the final pixel. Next, 
GSV estimation was used to estimate AGB (Mg d.m. (dry matter) ha− 1) 
based on poplar wood basal density as follows: 

AGB=GSV × BEF × WBD 5 

where GSV is the calculated growing stock volume, BEF (biomass 
expansion factor) is the category-specific biomass expansion factor 
(dimensionless), and WBD (wood basal density) is the wood basal den
sity (Mg d.m. m− 3). In particular, BEF and WBD are those already 
applied by Vangi et al., 2023b, which for poplar plantation stands are 
equal to 1.2 and 0.29, respectively. Finally, the 2021 poplar plantation 
carbon stocks (CS) (MgC ha− 1) were obtained using the default carbon 
fraction factor of 0.47 from AGB (IPCC, 2006).

To assess the accuracy of GSV, AGB, and CS poplar plantation esti
mations, we calculated the RMSE by comparing them with the NFI and 
square plot field truth datasets. Since we had the poplar plantation 
mappings for the years 2021 and 2022, we were able to identify cut 
poplar plantations and thus available wood for industrial activities. For 
these plantations, we estimated the central stock values based on GSV, 
AGB, and CS maps.

4. Results

4.1. Canopy height model

The predicted U-Net CHM, trained using S1 and S2 predictors and 
sparse GEDI reference data, was produced for the whole study area. Due 
to the variability of agroforestry’s spatial and temporal distribution in 
agronomic environments, an accurate forest mask is lacking and, 
therefore, has not been applied. However, the U-Net CHM visual in
spection enables the differentiation of agroforestry plantation cover 
from other land uses (Fig. 2).

4.1.1. Evaluation with independent datasets
For the 35 NFI plots, the height predictions at the pixel level ranged 

between 4.6 and 24 m, with a standard deviation of 5.1 m, while the 
original NFI values varied from 4.1 to 27.2 m, with a standard deviation 
of 6 m. The comparison between the predicted height and the NFI field 
truth dataset yields an R2 coefficient of 0.63 (MAE = 2.7 m, RMSE =
22.6 %).

The comparison with the NFI dataset is reported in Fig. 4, where a 
strong correlation with our canopy height is evident. Moreover, the most 
discordant data are for the oldest INFC plots, acquired in 2018. Thus, as 
the estimates refer to 2021, these differences are explained mainly by 
the rapid growth of poplars.

4.1.2. Comparison with other canopy height maps
For the U-Net CHM evaluation, we compared the height predictions 

with the already available height models of Potapov et al. (2021), Lang 
et al. (2023), and Tolan et al. (2024). Typically, forest plantations are 
surrounded by non-forested land use, mainly crops. From a visual 
comparison, the forest stands of U-Net CHM had higher homogeneity. 
Slightly noisier appears to be the product in Lang et al. (2023), pre
sumably due to a filter applied to the CHM, while in Potapov’s product, 

Fig. 2. Wall-to-wall forest canopy height (U-Net CHM) map of Padan Plain for 2021. In the boxes, there are three areas with extensive poplar plantations.
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the borders of the various land uses appear poorly defined, partly 
because of the lower spatial resolution. In Tolan et al. (2024), where the 
pattern is always recognizable, greater diversity, even within planta
tions, was evident (Fig. 3).

Additionally, a comparison between the NFI data and the four CHMs 
analyzed is presented in Fig. 4. The U-Net CHM exhibits the strongest 
relationship, with the highest R2 of 0.63, followed by Tolan et al. (2024) 
with an R2 of 0.49, which reveals an overestimation of values. In 
contrast, the CHM of Lang et al. (2023) yields an R2 of 0.16, whereas 

Potapov et al. (2021) achieve an R2 of 0.07. In terms of RMSE, the U-Net 
CHM reached 3.7 m, corresponding to 22.6 % of the mean observed 
height, while Tolan et al. (2024), Lang et al. (2023), and Potapov et al. 
(2021) reached 9.9, 5.9, and 12.8m, respectively (corresponding to 60.2, 
35.9, and 78.2 % of the measured height, respectively).

4.2. Poplar stocks

Considering the U-Net CHM accuracy, we used it to estimate the 

Fig. 3. Visual comparison at different scale of U-Net CHM data (10 m resolution) and three other products Tolan et al. (2024) (2024 - 1 m resolution), Lang et al. 
(2023) (2021 - 10 m resolution), and Potapov et al. (2021) (2019 - 30 m resolution).
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poplar plantation stocks. Estimates of GSV and AGB were compared with 
ground truth data measured in the NFI and square areas (Figs. 5 and 6). 
The CS was excluded from the comparison since it is derived directly 
from the AGB values. Similarly, we focused on GSV for comparison with 
square plots, as AGB was derived from GSV values by applying Equation 
(5). A comparison with DBH data, derived from U-Net CHM using 
Equation (3), was also included.

Comparison with NFI data for DBH, GSV, and AGB yields RMSE 
values of 30.7 %, 46.2 %, and 63.2 %, respectively (Fig. 5). The com
parison reveals a relatively strong relationship for GSV, while AGB ap
pears to be slightly underestimated.

Comparison with independent field truth data in the 50 × 50 cells 
shows consistent values for DBH and GSV, with RMSE values of 19 % 
and 37.7 %, respectively (Fig. 6).

From the extraction of the stocks on the poplar stands mapped in the 
year 2021 (Fig. 7), the total GSV, AGB and C stock were 1,956,588.1 m3, 
703,589.1 Mg and 351,794.5 MgC, respectively, while the average GSV, 
AGB and C stock were 66.28 m3 ha− 1, 23.83 Mg ha− 1 and 11.92 MgC 
ha− 1, respectively.

We also extracted the three stocks within the harvested poplar stands 
between 2021 and 2022 to calculate the average and total harvested 

stock for that year. For a total harvested area of 4372 ha, we obtain a 
total harvested GSV of 36,9012.5 m3, corresponding to 132,697 Mg of 
AGB and 66,348.52 MgC of C stock. The average GSV removed within 
the stands was 68.24 m3 ha− 1, corresponding to 24.53 Mg ha− 1 and 
12.26 MgC ha− 1 of AGB and C stock, respectively.

5. Discussion

This study deepens our understanding of the poplar plantations, the 
leading supplier of Italian wood products for industrial use. For esti
mating poplar stocks, we used mapping data for poplar plantations in 
northern Italy for 2021 and 2022. Although this data was supported by 
semi-automatic mapping approaches (D’Amico et al., 2021), it still 
required a time-consuming process of photointerpretation. The U-Net 
CHM we developed in this study was applied for the first time to monitor 
poplar plantations by integrating Sentinel and GEDI data, demonstrating 
its usefulness for advancing knowledge in agroforestry systems, which, 
with further research, could also lead to more detailed mapping.

Poplar plantations are dynamic systems, showing both spatial and 
growth variations from year to year. Comparisons with NFI data confirm 
the high dynamism of these plantations. The most significant biases, 

Fig. 4. Quantitative comparison of U-Net CHM data and three other products Tolan et al. (2024), Lang et al. (2023), and Potapov et al. (2021) with the NFI data in 
poplar plantations. The black line represents the 1:1 line.

G. D’Amico et al.                                                                                                                                                                                                                               Journal of Environmental Management 393 (2025) 127197 

7 



Fig. 5. Comparison of DBH, GSV, and AGB against the Italian NFI data field truth dataset in poplar plantations.

Fig. 6. Comparison of GSV against the square plot field truth dataset in poplar plantations.

G. D’Amico et al.                                                                                                                                                                                                                               Journal of Environmental Management 393 (2025) 127197 

8 



typically overestimations, were observed in plots measured in 2018. 
These discrepancies may be partially attributed to natural growth be
tween the NFI survey and the development of the U-Net CHM for the 
nominal year of 2021. Notably, the growth rates of poplar plantations in 
the Po Valley, expressed as mean annual increments, are among the 
highest in temperate zones, potentially exceeding 25 m3 ha− 1 yr− 1 

(Spinelli et al., 2011; Pra et al., 2019). The new Italian NFI is expected to 
provide annual estimates, enhancing the temporal resolution of forest 
data in Italy. However, the sparse and systematic distribution of NFI 
field plots remains poorly suited for monitoring intensively managed 
and spatially clustered systems such as poplar plantations, highlighting 
the need for complementary remote sensing approaches (D’Amico et al., 
2025, in press).

According to our maps, an estimated 380,000 m3 of timber were 
harvested and made available to the market in 2021. While this amount 
is significant, it is noticeably lower than the figures reported in other 
studies. Considering the growth of the Italian poplar cultivation sector in 
recent years, our data align with Zanuttini et al. (2021), who reported 
Italian poplar plywood production for 2017 at approximately 270,000 
m3.

Accurate spatial data on growing stock, biomass and carbon are 
essential for guiding forest management practices, including harvest 
scheduling, yield forecasting, and resource allocation (Herold et al., 
2019). Moreover, reliable estimates of plantation stocks are critical for 
shaping evidence-based policies at national and regional levels, partic
ularly in the context of land-use planning, timber supply chain optimi
zation, and the sustainable development of the forest-based bioeconomy 
(Corona et al., 2018).

LiDAR data are recognized as essential for quantifying forest stocks 
(Nilsson et al., 2017; Chirici et al., 2020; D’Amico et al., 2022). How
ever, frequent airborne LiDAR surveys remain expensive. For example, 
wall-to-wall airborne laser scanning data in Italy is still unavailable. This 
lack of data and the derived forest variables map have created 

limitations for validating the estimated CHM and poplar stocks. Liu et al. 
(2019) mapped the canopy height of poplar plantations, achieving an 
RMSE of 1.58 m, despite the field validation samples having a maximum 
height of only approximately 10 m. This study utilized the ZY3-02 sat
ellite, which was specifically developed for China’s civil space infra
structure (Xu et al., 2017). However, Chinese Earth observation 
satellites remain underutilized globally, with vegetation-related appli
cations primarily driven by sensors on American or European satellites 
(Zhang et al., 2023). To address these limitations, integrating Sentinel 
data with satellite LiDAR data can provide more detailed and accurate 
information. Our results confirm the significant potential of integrating 
multiple data sources for enhanced mapping.

Since this study focused on estimating poplar plantation stocks, we 
selected three international CHMs for comparison with the U-Net CHM 
we produced. Among the many available CHMs (such as Pauls et al., 
2024; Astola et al., 2021; Fayad et al., 2024), we used the datasets from 
Potapov et al. (2021), Lang et al. (2023), and the recent dataset from 
Tolan et al. (2024), which, with a 1 m resolution, represents a new 
generation of global height models.

A comparative analysis of the U-Net CHM and the three additional 
canopy height maps available across the survey area highlighted the 
potential of our product. Visual inspection in six representative contexts 
(Fig. 3) demonstrated that the U-Net CHM effectively delineated the 
boundaries of poplar plantations, with greater consistency and spatial 
clarity. The CHM by Lang et al. (2023), while comparable in resolution 
(10 m), exhibited more noise outside plantation areas but provided a 
relatively accurate representation of low-stature vegetation, tending to 
overestimate shorter canopies and underestimate taller ones. In 
contrast, the coarser-resolution CHM by Potapov et al. (2021) (30 m) 
lacked spatial detail and was less effective in capturing fine-scale height 
variation. The high-resolution product by Tolan et al. (2024) (1 m) 
showed clear separation between poplar plantation and adjacent areas 
but revealed internal variability within plantations that was not always 

Fig. 7. Poplar plantation GSV map of Padan Plain at 10 m resolution for 2021. In the boxes, there are three areas with extensive poplar plantations.
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consistent with their structural homogeneity. These visual patterns 
generally align with those reported by Moudrý et al. (2024).

However, our quantitative analysis produced contrasting results: 
both Potapov et al. (2021) and Tolan et al. (2024) showed a systematic 
overestimation of canopy height in our study area, while Lang et al. 
(2023) yielded comparatively lower errors. These discrepancies likely 
stem from differences in forest type and context. Moudrý et al. (2024)
evaluated CHMs across diverse natural and semi-natural forests around 
the globe, whereas our study focused on intensively managed poplar 
plantations in the Po Valley, characterized by short rotation cycles, rapid 
growth, and structural homogeneity. Such conditions make this forest 
system particularly sensitive to spatial resolution and temporal align
ment between remote sensing data and reference observations, under
scoring the importance of context-specific CHM validation approaches.

Given the high dynamism of poplar plantation management, the 
reference year of the different datasets must be considered. Referring to 
the NFI data, mainly surveyed in 2018, the dataset of Potapov et al. 
(2021), with a reference year of 2019, is the most consistent. However, it 
shows an evident overestimation, with the worst RMSE value of 78.2 %. 
The CHM from Tolan et al. (2024), derived from Maxar satellite images 
covering the period from 2018 to 2020, shows a clear overestimation of 
height, with an RMSE of 60.2 %. The CHM from Lang et al. (2023), with 
a reference year of 2020, yielded RMSE values of 35.9 %, whereas the 
U-Net CHM, with a reference year of 2021, achieved the lowest RMSE of 
22.6 %. Although we were aware of the survey dates for the NFI plots 
and the reference years for the CHMs, we avoided adding uncertainty 
factors by harmonizing the analyses to a common year using the poplar 
increment (Schelhaas et al., 2018).

At the national level, biomass datasets are also available. Giannetti 
et al. (2022) developed AGB maps at a 23 m resolution based on the 
second Italian NFI with a reference year of 2005. At the global scale, 
several maps have been developed, such as the biomass map at a 300 m 
resolution for 2010 by Spawn et al. (2020) or the product by Santoro 
et al. (2021) for 2010 at a 1 ha resolution. The GEDI L4B product, based 
on data acquired between 2019 and 2021, provides a global AGB map at 
a 1 km resolution (Duncanson et al., 2022). Biomass maps have also 
been produced at the European scale, based on various input data and 
modeling approaches. Avitabile et al. (2024) recently released maps of 
forest area, biomass stocks, and their availability for wood supply in 
2020, including statistics on gross and net volume increments from 2010 
to 2020. However, several studies have highlighted differences in esti
mates (Araza et al., 2023) and systematic deviations from ground 
reference data, mainly due to their limited global coverage (Duncanson 
et al., 2019). Therefore, locally developed maps, such as our U-Net CHM, 
validated with independent datasets, remain the most reliable for local 
studies (Giannetti et al., 2023).

Satellite LiDAR data, particularly from the GEDI and ICESat-2 mis
sions, are now fundamental sources of information (Guerra-Hernández 
et al., 2024; Varvia et al., 2024). The upcoming EDGE mission holds 
promise for advancing our understanding of complex forest systems, 
such as poplar plantations and agroforestry. While these data are 
beneficial and promising, they do have limitations. Products developed 
by integrating GEDI data with other remote sensing data can be affected 
by the GEDI measurement uncertainty of approximately 10-m in 
determining the ground location (Dubayah et al., 2020). Specifically, 
GEDI footprints near forest boundaries may capture bare ground outside 
the forest and vice versa (Schwartz et al., 2024). Moreover, the survey 
area has a relatively flat environment; however, in more morphologi
cally complex regions, such as Italian forests, developing similarly ac
curate CHMs will require additional efforts.

6. Conclusion

The renewed prominence of agroforestry in the context of climate 
change mitigation and Green Deal policies is well-documented in a 
growing body of recent scholarly literature. In Italy, research efforts 

have primarily focused on the inventory of poplar plantations (Marcelli 
et al., 2020) and the development of mapping methodologies (D’Amico 
et al., 2021a). Additional studies have addressed the estimation of tree 
structural attributes (Chianucci et al., 2020; Puletti et al., 2021; Romano 
et al., 2024) and the assessment of tree stress conditions (Tauro et al., 
2022).

The primary objective of this study was to estimate the spatial dis
tribution of poplar plantation stocks in the Padan Plain, northern Italy. 
We generated maps of growing stock volume, aboveground biomass, 
and carbon stocks using a canopy height model developed through a 
deep learning U-Net framework. This model utilized multi-band imagery 
from S1 and S2 as inputs to predict tree height derived from GEDI pulse 
waveforms. The U-Net model, previously successfully applied in France 
(Schwartz et al., 2023, 2024), demonstrated high efficiency, out
performing other height estimation models. Specifically, the U-Net-
derived canopy height model yielded an RMSE% of 22.6 % compared 
with NFI plot data.

Our estimates underscore the importance of poplar wood for indus
trial needs. Specifically, for 2021, we estimated approximately 
1,956,600 m3 of timber, corresponding to 352,000 Mg of carbon stored. 
Harvest estimates for 2022 indicate that poplar production in northern 
Italy totaled approximately 370,000 m3, equivalent to over 130,000 Mg 
of AGB and 66,000 Mg of C stock.

Given the continuous availability of S1 and S2 data, the generated 
canopy height map can be updated on an annual basis to track changes 
in tree height. Consequently, the integration of Earth observation data 
into national forest monitoring systems enables the effective yearly 
monitoring of poplar plantation stocks.
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