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Abstract: Cork oak (Quercus suber) woodlands hold significant ecological, cultural, and
economic value in the Mediterranean basin, particularly due to cork production, one of
the most valued non-wood forest products worldwide. However, cork oak ecosystems are
increasingly threatened by climate change, land-use intensification, and rural abandonment,
leading to widespread signs of decline. To address these challenges, data-driven and
scalable methods are more essential than ever. Satellite-based remote sensing (RS) offers
a promising approach for large-scale, cost-effective, and timely monitoring of cork oak
forests dynamics and health, but an exhaustive review about this topic is missing. This
study reviews 35 peer-reviewed articles published between 2010 and 2025, assessing how
satellite RS has been applied to monitor cork oak landscapes. The results show that
key research topics include forest disturbances, land cover classification, and forest and
environmental variables monitoring. Landsat is the most frequently used satellite mission,
and NDVI is the most applied vegetation index. Although machine learning techniques
and accuracy metrics are heterogeneous, with results that are difficult to compare, relevant
performances have been achieved. For instance, the highest classification accuracy (98%)
was reached in mapping cork oak mortality. However, the field remains fragmented,
with limited attention to key ecological indicators such as biodiversity, resilience, and
ecosystem services. RS for cork oak monitoring is still a relatively young discipline with
high potential for development, requiring greater methodological consistency and stronger
integration with conservation strategies to support adaptive management in the face of
future environmental pressures.

Keywords: earth observation satellite; cork oak; Quercus suber; spaceborne remote sensing;
agroforestry

1. Introduction
Cork oak (Quercus suber L.) woodlands have a key ecological and economic value in

the Mediterranean region and cover approximately 2.2 million hectares, mainly distributed
across seven countries: Portugal, Spain, Morocco, Algeria, Tunisia, Italy, and France [1]
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(Figure 1). Cork oak ecosystems refers broadly to two main structural types, primarily based
on stand density but also taking into account their ecological functions, productive uses,
and silvicultural management: (1) open cork oak systems characterized by low tree density
and integrated grazing or cropping and (2) dense cork oak woodlands, with higher canopy
cover, reduced understory management, and more continuous forest structure [2]. Open
cork oak stands are mainly known as agroforestry and silvopastoral systems, structurally
similar to savannas, and locally identified by various regional names—montado in Portugal,
dehesa in Spain, azaghar in North Africa, and meriagos in Sardinia.

The ecological significance of cork oak systems extends beyond species richness
to include their role in supporting globally and regionally threatened taxa [3]. These
landscapes are recognized as biodiversity hotspots, sustaining high alpha-diversity across
multiple taxa, including birds, mammals, amphibians, and reptiles, many of which are
endemic or threatened. They also serve as critical habitats for migratory and overwintering
bird species [4]. Variation in plant species composition among cork oak communities is
shaped by geographic location, structural complexity, management regimes, and local
ecological conditions [2]. As such, their sustainable management is of strategic importance
for preserving biodiversity across the Mediterranean basin. Additionally, cork oak systems
are iconic Mediterranean landscapes, protected by the Natura 2000 network and classified
as “biodiversity-based product systems” under the Convention on Biological Diversity [5].
They are also listed in Annex I of the Habitats Directive [6] as key conservation habitats.

Characterized by low-input, multifunctional land management, cork oak ecosystems
follow a “one system, multiple land uses” approach, delivering a wide range of regulating,
supporting, and provisioning services. These include biodiversity conservation, carbon
storage, soil protection, water retention, and landscape connectivity, as well as sustainable
productions of goods such as cork, acorns, and forage. Socio-culturally, they support
traditional pastoral and agricultural practices, shaping rural Mediterranean identities for
millennia [2,7].

Figure 1. Map of the Quercus suber distribution area. Continuous green = native continuous range;
green cross = isolated native populations; orange triangle = introduced and naturalized (synanthropic)
populations (EUFORGEN Database [8]).

Cork, the main product of cork oak trees, is one of the most valuable non-wood forest
products worldwide [9]. Cork is traditionally stripped from the trunks of mature trees,
typically older than 25 years, every 9 to 14 years, in a process that does not harm the tree
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and allows for continuous production over its lifespan. Its remarkable physical properties,
such as low permeability, high elasticity, rot resistance, and thermal insulation, make it
uniquely versatile. Historically, cork has played a crucial role in ancient civilizations for
over 6000 years, used in fishing and maritime activities by the Greeks, Egyptians, Persians,
and Chinese. In ancient Greece, cork’s softness and durability made it a material of choice
for footwear—a tradition that persists to the present day. Nowadays, Portugal is the world
leader in cork production (46%), followed by Spain (33%), Morocco (6%), Algeria (5%),
Tunisia (4%), Italy (3%), and France (3%) [10]. While cork has a variety of applications, 70%
of its production has historically been used for wine bottle stoppers [9]. This use dates back
to Roman times and later expanded into industrial-scale production in the 17th century [2].
Although the demand for cork wine stoppers has declined due to concerns over “cork taint,”
cork remains an environmentally sustainable material with a lower carbon footprint than
plastic and aluminum alternatives [11,12]. Modern applications are valorizing other cork
uses, which generate solid industrial activity, including insulation, aerospace materials,
construction materials, and sustainable fashion [1].

Despite their economic, ecological, and cultural significance, cork oak woodlands
have diminished over the past decades, increasingly threatened by both climatic and
anthropogenic pressures [13,14]. Rural area abandonment, the expansion of mechanized
agriculture, overgrazing, fires, rising temperatures, prolonged droughts, afforestation with
exotic trees, pests, dieback, and the broader impact of climate change have all contributed
to their decline [2]. This decline has been observed in several ecosystem features such as
tree dieback, reduced growth and regeneration, tree canopy cover, lower cork yields and
quality, and complex pest dynamics [15,16]. Climate change alone is projected to reduce
cork production by up to 20% by the end of the 21st century [7]. These pressures not
only undermine cork production but also compromise the long-term resilience of these
fragile ecosystems.

Effectively addressing these challenges requires timely, accurate, and continuous
monitoring. Remote sensing (RS) has emerged as a powerful tool for forest health moni-
toring, enabling the observation of large areas, faster data acquisition, and reduced costs
compared to traditional field assessments [17]. RS includes various platforms, such as
airborne LiDAR (Light Detection and Ranging) and UAVs (Unmanned Aerial Vehicles),
which provide high-resolution data suitable for detailed local studies. However, airborne
surveys are extremely resource-demanding in terms of both costs and time and less feasible
for large-scale assessments. Given these considerations, this review focuses on spaceborne
RS data, as only satellite-based observations provide consistent, comparable, and frequently
updated information across broad areas at no cost—an essential requirement for moni-
toring cork oak systems, which are widespread across several Mediterranean countries
and currently facing a general decline. Satellite RS enables systematic, repeatable, and
scalable observations, supporting long-term assessments of tree cover, productivity, and
ecosystem health [18]. It enables the creation of detailed, spatially explicit maps crucial
for disturbance assessment [19], while offering a cost-effective solution for large-scale
forest monitoring [20,21]. Freely available datasets such as Landsat (30 m spatial reso-
lution, 16-day revisit time) and Sentinel-2 (up to 10 m spatial resolution, 5-day revisit
time) provide medium to fine resolution and are widely used for monitoring forest ecosys-
tems [22–24]. Furthermore, advancements in computational capabilities, machine learning,
and artificial intelligence [25,26] have significantly enhanced RS data processing, enabling
automated land cover classification, dieback risk prediction, and optimized conservation
strategies [27–29].

In this context, a thorough assessment is needed to review the current state of the art
of satellite RS application in monitoring cork oak woodlands. This work aims to provide a
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comprehensive overview of how RS has been applied to study these ecosystems and their
associated ecosystem services. Specifically, this study investigates (i) where and which
aspects of cork oak ecosystems have been monitored, (ii) the satellite data and derived
predictors most commonly used as proxies, and (iii) the effectiveness of RS in assessing
key parameters within these woodlands. Understanding these factors is essential for
developing cost-effective and scalable methods to support the sustainable management
and conservation of cork oak landscapes.

2. Materials and Methods
The selection of articles was conducted using the advanced search feature of Elsevier’s

Scopus engine (www.scopus.com), URL accessed on 6 February 2025. The search included
the following fixed keywords within the “Article title, Abstract and Keywords” fields:
1. (“cork oak” OR “quercus suber” OR “montado” OR “dehesa” OR “savannah like
ecosystem*” OR “agrosilvopastoral mediterranean system*”) AND 2. (“remote sensing”
OR “satellite” OR “earth observation” OR “MODIS” OR “sentinel” OR “landsat”). The
search terms were intentionally designed to focus on spaceborne remote sensing applied
to cork oak woodlands, ensuring a focused scope for the review. Consequently, terms
related to airborne remote sensing technologies (e.g., “LiDAR”, “UAV”, “drone”) were not
included, except in cases where such technologies were explicitly combined with satellite
data. Based on this search, 145 papers were found. Then, only original, peer-reviewed,
and final-stage publication papers defined as “Article” written in English were considered.
Additionally, the selection was restricted to manuscripts published from 2010 onward, as
advancements in technology have significantly shaped the field, making older research less
relevant. This resulted in a final set of 104 articles. Since the terms dehesa and montado are
sometimes used to describe not only cork oak (Quercus suber) woodlands but also other oak
species, such as holm oak (Quercus ilex), relying solely on abstracts was not sufficient to
determine a study’s relevance for our review. Therefore, a meticulous full-text review of
all 104 articles was conducted to confirm the relevance of Quercus suber in the study and
to ensure its inclusion in this review (Figure 2). More specifically, only articles addressing
both the following two topics were selected: (A) the use of satellite-based remote sensing
methodology, either alone or in combination with other techniques and (B) a focus on the
cork oak (Quercus suber) or at least the inclusion of cork oak among the studied species.
After applying these criteria and carefully reading the 104 articles, 35 articles were finally
selected. In total, 16 articles were excluded because they did not address both topics (A)
and (B). Overall, 25 articles were excluded because they did not address topic (A), and
28 articles were excluded because they did not address topic (B).

For the systematic review, a comprehensive analysis of the selected articles was
conducted, and the following key information was extracted: (1) the country where the
study was carried out, (2) the type of satellites data used, their spatial resolution, and the
observation period, (3) the satellite-derived predictors and the object of the study, and
(4) the main analysis methods or algorithms applied along with their accuracy metrics,
namely the coefficient of determination (R2), root mean square error (RMSE), and the
overall accuracy (OA). In detail, R2 represents the proportion of variance in the dependent
variable explained by the model, ranging from 0 to 1, where values closer to 1 indicate
better predictive performance. On the other hand, RMSE measures the difference between
observed and predicted values, with lower RMSE indicating a more accurate model. Finally,
OA quantifies the accuracy of classification models as the proportion of correctly classified
instances out of the total predictions made. Accuracy metrics other than R2, RMSE, and OA
were not reported in this review to maintain consistency and comparability across studies.

www.scopus.com
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Figure 2. Systematic review workflow diagram. Criteria A: use of satellite-based remote sensing;
criteria B: cork oak focus.

In addition, each article was categorized into one of four main research themes based
on its primary objective and the specific application of satellite-based remote sensing. These
thematic groups reflect the major areas of investigation within the selected literature and
include the following: forest disturbances (FDs), which includes studies addressing drivers
of cork oak forest degradation such as dieback, wildfires, and water stress; forest variables
(FV), focusing on structural and functional aspects of the woodlands, including biomass,
canopy cover, and productivity; classification (C), which involves land use and land cover
mapping, as well as species identification using satellite data; and environmental variables
(EV), covering broader climatic and ecological factors influencing cork oak ecosystems.
Collectively, these thematic areas also provide key insights into the biodiversity dynamics
of cork oak systems, highlighting how disturbances, forest structure, species distribution,
and environmental conditions interact to shape ecosystem integrity and resilience. This
classification was used to guide the organization of the results and to highlight prevailing
research trends and existing knowledge gaps (table in below).

3. Results
3.1. Study Areas Distribution

Portugal recorded the highest number of publications using satellite data for cork
oak monitoring, with 15 articles, followed by Spain (9) and Morocco (7). Italy and Algeria
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showed significantly lower research output, with three and one publications each (Figure 3).
No studies using satellite remote sensing specifically focused on cork oak were identified for
France or Tunisia, despite these countries being part of the natural ecological distribution
range of Quercus suber (Figure 1). The first studies from Morocco appeared only recently,
starting in 2022 and in 2021 for Algeria.

 
Figure 3. Number of reviewed studies per country, based on the location of the area of interest.

3.2. Bibliometric Analysis

Building on the thematic classification presented in the methodology, the 35 articles
selected for this review (Table 1) were analyzed according to their primary research focus,
highlighting how satellite remote sensing has been applied to monitor cork oak woodlands
across different domains. As shown in Figure 4, forest disturbances (FDs) represent the
largest category and include 12 studies investigating various drivers of cork oak forest
degradation, such as dieback and decline [30–33], epidemic outbreaks [34], wildfire risk
assessment and post-wildfire vegetation recovery [35–38], deforestation hotspots [39], and
water stress [40,41]. The second group, C, consisting of nine studies, primarily investi-
gates land use and land cover changes over time, assessing how cork oak woodlands
evolve in response to environmental and anthropogenic factors [42–46]. It also explores
the spectral reflectance properties of cork oak trees [47,48], and species distribution [49].
FV includes eight studies and focuses on the structural and functional characteristics of
cork oak woodlands. Research in this category focuses on biomass, carbon stock, and
productivity [16,50–54], as well as tree canopy cover [55], tree canopy density [56], and
evapotranspiration [57], providing insights on forest growth, carbon sequestration, and wa-
ter balance. Lastly, the EV group comprises six studies that investigate broader climatic and
ecological factors influencing cork oak ecosystems. This includes research on aridity [58],
on the potential of vegetation indexes (VIs) in modelling soil organic matter (SOM) [59],
on the suitability of ground-dependent vegetation (GDV) [60], hydrology [61], and water
consumption [62], and on the role of oaks canopy cover in land surface temperature (LST)
and albedo (LSA) [63].
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Table 1. Results of the selected articles.

Ref. AOI Satellite Data Resolution [m] Observation
Period

Satellite-Derived
Predictors Object of the Study Topic Main Method/

Algorithm Accuracies

[59] ES LS 30 1994–2021 NDVI Aridity-induced
phenological changes EV R2 = 0.57

[32] ES MODIS 250 2000–2022 Tree dover decline FD RTA (TS, CMK, FDR) OA = 70.4%

[35] IT S2, PS, S1 3 ÷ 10 2018–2022
NDVI, GNDVI, MCARI,
NDI45, NDWI, REIP, SCI,
VH/VV, VHxVV, mRFDI

Epidemic outbreaks FD RF OA = 74.4%
OA = 50.88%

[43] PT S2 10 2019 GNDVI, SAVI, NDII, EVI,
NDRE 1, NDRE 2, CI Land cover change C RF

KNN
OA = 92.16%
OA = 88.69%

[51] MA LS 30 1985–2020
NDVI, ARVI, CIgreen,
DVI, EVI, GNDVI, OSAVI,
SAVI, TVI

Biomass, Carbon stock FV MLR-biomass
MLR-carbon stock

R2 = 0.81
R2 = 0.69

[44] MA LS 30 1989–2022 RGB 3, 2, 1
RGB 4, 3, 2 Land cover change C MLC OA = 91.29%

[31] MA LS 15 ÷ 60 2015–2017 NDVI, SAVI Forest dieback FD MLR, Kruskal-Wallis
ANOVA, MCA

[40] MA LS 30 2000–2020 GFC Deforestation hotspots FD Getis-Ord Gi MK

[36] MA MODIS 250 2002–2020 Fire_CC51,
FIRMS Wildfire risk assessment FD OHA

EHA

[52] ES LS 30 1994–2008 NDVI Biomass, Productivity FV GLMM-biomass
GLMM-productiv.

RMSE = 31.42 Mgha
RMSE = 0.73 Mg/ha

[37] ES LS, S2,
ASTER 10 ÷ 100 2017–2021 NDVI, LST Wildfire risk assessment FD

[60] MA LS 2018 NDVI VIs for SOM modelling EV
Pearson correlation matrix,
ANOVA, Newman-Keuls
post-hoc test

[33] PT Pleiades 0.5 2018–2020 NDVI, RGI, GNDVI Dead tree detection FD K-means OA = 98%

[50] IT LS 30 2000–2020 NDVI, EVI, SAVI, EVI2,
MSAVI, NBR, NDWI Species distribution C RF, GBT, GLM,

KNN, CART

[47] MA MODIS 250 2000–2021 NDVI, EVI Land cover change C Pettitt homogeneity, MK

[62] ES S2 10 NDVI Hydrology, terrain
and vegetation EV
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Table 1. Cont.

Ref. AOI Satellite Data Resolution [m] Observation
Period

Satellite-Derived
Predictors Object of the Study Topic Main Method/

Algorithm Accuracies

[45] DZ LS 30 1987–2017 Land cover change C KNN

[63] PT LS,
MODIS 30 ÷ 1000 2013–2015 Evapotranspiration (ET) EV STARFM RMSE = 0.67 mm/day

[41] PT MODIS 1000 ÷ 10,000 2001–2018 NDVI, LSA, LST Water stress FD SEBS R2 = 0.76

[38] ES LS 60 1975–1993 NDVI Postfire vegetation
recovery FD

[42] ES S2 NDVI, SAVI Water stress FD VI-ETo RMSE = 0.47 mm/day

[55] PT LS 15 ÷ 30 1984, 1999, 2014 EVI, SWIR32, CRI1, CIG,
NMDI, SATVI Land cover change C SGB

OA = 81.85%
OA = 75.58%
OA = 80.07%

[34] PT S2 10 ÷ 60 m 2017–2018 NDVI, SAVI, NDWI,
GNDVI, CIred, VCI Diseased tree detection FD CDF OA = 68%

[61] PT ASTER 25 NDWI Groundwater Dependent
Vegetation (GDV) EV GWR

[16] PT LS, MODIS 30 ÷ 250 1984–2017 NDVI Biomass, Carbon stock,
Productivity FV MK, CMK, TS

[53] PT QB,
WV2 0.5 ÷ 0.7 2006, 2011 EVI, SAVI, NDVI,

SR
Biomass, Carbon stock,
Productivity FV CSS, OOC

[46] PT LS 30 1984–2009 NDVI, TCT Land cover change C CVA, SLCC OA = 71%

[56] PT S2 10 2015 NDVI, PSRI
NDII, SWIR32, NDRE1-2-3 Tree canopy cover FV SGB

[58] ES LS,
MODIS 2012–2013 LAI, LST Water stress and ET FV TSEB

[54] PT LS 2000–2013 EVI Biomass, Carbon stock,
Productivity FV TSA, Kendall’s Tau,

Spearman’s correlation

[57] PT LS 30 ÷ 120
AVI, BI, SI,
SSI, TI, B1-
B6

Canopy density FV FCD OA = 78%

[64] PT LS,
MODIS 30 ÷ 120 2011

EVI, SWIR32, CRI1,
CIgreen, NMDI,
SATVI

LST, LSA EV SGB R2 = 0.86
R2 = 0.94
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Table 1. Cont.

Ref. AOI Satellite Data Resolution [m] Observation
Period

Satellite-Derived
Predictors Object of the Study Topic Main Method/

Algorithm Accuracies

[48] IT LS 15 ÷ 30 2014–2015 B1-B8 Spectral signature C MLC-Scr study area
MLC-Ang study area

OA = 93.3
OA = 87.7

[49] PT MODIS 500 2011–2013 NDVI, SAVI, EVI Spectral signature C GORT

[39] ES QB 2.4 2003–2004 NDVI, B1, B2, B3, B4 Postfire vegetation
recovery FD RtA, BRT

R2 = 0.50
R2 = 0.65
R2 = 0.79

Abbreviations—Satellite-derived predictors: ARVI (Atmospherically Resistant Vegetation Index), AVI (Advanced Vegetation Index), BI (Bare Soil Index), CI (Chlorophyll Index), CIgreen
(Chlorophyll Index Green), CIred (Red-edge Chlorophyll Index),), CRI1 (Carotenoid Reflectance Index 1), ET (Evapotranspiration), GFC (Global Forest Cover Change), GNDVI (Green
Normalized Difference Vegetation Index), LSA (Land Surface Albedo), LST (Land Surface Temperature), MCARI (Modified Chlorophyll Absorption in Reflectance Index), mRFDI
(Modified Radar Forest Degradation Index), MSAVI (Modified Soil Adjusted Vegetation Index), NBR (Normalized Burn Ratio), NDII (Normalized Difference Infrared Index), NDRE
(Normalized Difference Red Edge Index), NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), NMDI (Normalized Multi-band Drought
Index), OSAVI (Optimized Soil Adjusted Vegetation Index), PSRI (Plant Senescence Reflectance Index), REIP (Red-Edge Inflection Point), RGI (Simple Ratio Red/Green Index), SATVI
(Soil-Adjusted Total Vegetation Index), SCI (Soil Colour Index), SI (Shadow Index), SR (Simple Ratio), SSI (Scaled Shadow Index), SWIR32 (Short Wave Infrared Reflectance 3/2 Ratio),
TCT (Tasseled Cap Transformation), TI (Thermal Index), TVI (Triangular Vegetation Index), VCI (Vegetation Condition Index), VH/VV, VH*VV. Abbreviations—Main method/algorithm:
BRT (Boosted Regression Tree), CART (Classification and Regression Trees), CDF (Cumulative Distribution Function), CMK (Contextual Mann–Kendall Test), CVA (Change Vector
Analysis), CSS (Contrast Split Segmentation), EHA (Emerging Hotspot Analysis), FCD (Forest Canopy Density), FDR (False Discovery Rate), GBT (Gradient Boosted Tree), GLM
(Generalized Linear Model), GLMM (Generalized Linear Mixed Models), GORT (Geometric-Optical and Radiative Transfer), GWR (Geographically Weighted Regression), KNN
(K-Nearest Neighbor), MCA (Multiple Correspondence Analysis), MLC (Maximum Likelihood Classification), MLR (Multiple Linear Regression),), MK (Mann-Kendall Test), OHA
(Optimized Hotspot Analysis), OOC (Object-Oriented Classification), RF (Random Forest), RTA (Robust Trend Analysis), RtA (Regression Tree Analysis), SEBS (Surface Energy Balance
System), SGB (Stochastic Gradient Boosting), SLCC (Supervised Land Cover Classification), STARFM (Spatial and Temporal Adaptive Reflectance Fusion Model), TSA (Time-Series
Analysis), TS (Theil–Sen Slope), TSEB (Two-Source Energy Balance). Abbreviations—Topic: C (Classification), EVs (Environmental Variables), FDs (Forest Disturbances), FVs (Forest
Variables). Abbreviations—Satellite Data: LS (Landsat), S2 (Sentinel-2), S1 (Sentinel-1), PS (PlanetScope), WV2 (WorldView2), QB (QuickBird).
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Figure 4. Distribution of studies by research object, aggregated by research topic. Classification (C),
environmental variables (EVs), forest disturbances (FDs), forest variables (FV).

3.3. Satellite Missions and Derived Predictors

As shown in Figure 5, the Landsat mission emerged as the most frequently used source
of information (20 studies) among the analyzed studies, primarily applied for long-term
monitoring of cork oak forests’ land cover change [43–45,54]. On the other hand, MODIS
data, used in nine studies, supported large-scale analyses of vegetation dynamics [31],
wildfire risk [35], and water stress [40] due to its daily revisit time. Several studies combined
Landsat and MODIS information, such as to model evapotranspiration [62], forest health
and productivity [16], surface energy fluxes and water use [57], and the role of oak canopy
cover in land surface albedo (LSA) and temperature (LST) [63]. Furthermore, Sentinel-2
(seven studies) was mainly employed to detect cork oak decline [33] and map tree cover [55],
thanks to its higher spatial resolution. Also, Sentinel-2 was integrated in one study together
with PlanetScope and Sentinel-1, serving as an input in the Random Forest (RF) to model
healthy and disease classes in the two cork oak distribution sites in Italy [34]. Finally,
ASTER (two studies) was adopted to calculate the slope from the digital elevation model
predicting the distribution of groundwater-dependent vegetation (GDV) in Portugal [61],
while commercial satellites (QuickBird, WorldView2, Pléiades) appeared in isolated cases,
mainly for high-resolution biomass estimation [52], to assess species richness recovery
post-wildfire [38], and dead tree detection [32].

Among the satellite-based indices, the NDVI (Normalized Difference Vegetation Index)
was the most frequently used, accounting for 60% of the studies analyzed (Figure 6). Indeed,
NDVI has been used in all the research topics (FD, FV, C, EV). Similarly, EVI (Enhanced
Vegetation Index) and SAVI (Soil-Adjusted Vegetation Index) were frequently employed
(in 25% and 23% of the studies, respectively).
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Figure 5. Satellite data used in the analyzed papers grouped by publication period.

Figure 6. Number of variables assessed through satellite-based data, grouped by research topic: C
(classification), EVs (environmental variables), FD (forest disturbance), FVs (forest variables).

3.4. Statistical Performance

Among the studies reviewed in Table 1, model accuracy was primarily evaluated
using supervised learning performance metrics, such as R2, RMSE, and OA.

For R2 (Figure 7), the highest accuracy was reached by [63] in analyzing the impact of
oak canopy cover on LSA and LST, achieving R2 values of 0.86 and 0.94, respectively. This
study utilized Landsat and MODIS imagery and the Stochastic Gradient Boosting (SGB)
hybrid machine learning. On the other hand, Ref. [50] assessed biomass and carbon stock
spatialization and changes in Morocco’s Maamora cork oak forest, using multiple linear
regression (MLR) and integrating Landsat imagery with UAV LiDAR and forest surveys.
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The highest accuracy was achieved for biomass (R2 = 0.81) and carbon stock (R2 = 0.69),
with ARVI (Atmospherically Resistant Vegetation Index) performing as the most effective
vegetation index. Ref [40] investigated long-term water stress in a cork oak ecosystem
in Portugal using MODIS imagery and ERA-Interim tower data within the SEBS model,
reaching an R2 of 0.76 to assess evapotranspiration (ET). Ref. [38] investigated species
richness recovery in a cork oak woodland in Spain, one year after a wildfire, using very
high-resolution QuickBird imagery. Among the spectral variables, reflectance and spectral
contrast proved to be the most informative. The use of Boosted Regression Trees (BRT)
and Regression Tree Analysis (RtA) enhanced predictive accuracy, particularly at broader
spatial scales: R2 increased from 0.50 at a 1 m2 resolution to 0.79 at 100 m2. Finally, Ref. [58]
analyzed 25 years of NDVI data from Landsat to evaluate phenological shifts due to aridity
in Mediterranean forests, with an R2 of 0.57 for cork oak.

Figure 7. Distribution of R2 (left) and OA (right) for the analyzed study variables, grouped by
research topic (EV, FD, FV).

To assess classification performance, the OA was reported (Figure 7). The highest OA
(98%) was achieved by [32] using a K-means unsupervised algorithm for NDVI on Pléiades
very high resolution imagery for mapping cork oak mortality in a pasture environment.
Here, NDVI proved effective in distinguishing healthy from dead cork oak trees. Similarly,
Ref. [47] obtained 93.3% OA in characterizing the spectral signature of cork oaks, applying
the Maximum Likelihood Classification (MLC) on Landsat imagery combined with digital
photointerpretation and field surveys. Supervised machine learning approaches also
demonstrated strong classification performance. For instance, Ref. [41] compared K-Nearest
Neighbor (KNN) and Random Forest (RF) for forest cover mapping using Sentinel-2 in
southern Portugal, with RF achieving the highest OA (92.16%) compared to KNN (88.69%).
Similarly, Ref. [43] employed MLC on Landsat imagery to analyze land use and land cover
changes in the Maamora Cork Oak Forest (Morocco), obtaining an OA of 91.29%.

Conversely, studies on disease detection reported lower accuracies. For instance,
Ref. [34] monitored ink disease (Phytophthora cinnamomi) in cork oaks in southern Italy
using Sentinel-1, Sentinel-2, and PlanetScope imagery, applying RF to assess different
levels of disease severity. Here, OA reached 74.4% for two classes (healthy/damaged)
but dropped to 50.8% when distinguishing among disease classes of different severity
(healthy/damaged/severely damaged). Canopy density was also investigated: ref. [56]
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evaluated montado canopy density to identify High Nature Value (HNV) farmland using
Landsat imagery and the Forest canopy density (FCD) model, achieving an OA of 78%.

Finally, for RMSE, the best performing models were developed by [41,62] for mon-
itoring oak savanna vegetation water consumption and water stress. By estimating ET
using Landsat and MODIS data as well as Sentinel-2, they achieved RMSE values of
0.47 mm/day and 0.67 mm/day, respectively. Ref. [51] modelled aboveground biomass
and productivity, and the impact of climate change on various Mediterranean species,
including cork oak, using Landsat imagery. Here, spectral (NDVI) and structural (tree den-
sity) variables have proven to be the most relevant variables for modelling forest biomass
(RMSE = 31.42 Mg/ha) and productivity (RMSE = 0.73 Mg/ha) for cork oak trees.

4. Discussion
4.1. Contextualization of the Study

Satellite-based remote sensing (RS) provides ready-to-use, free, and high spatial and
temporal resolution data that has increasingly been adopted in forest monitoring world-
wide. In the last few years, satellite RS is becoming an important component to monitor
cork oak (Quercus suber) ecosystems, as these landscapes face growing environmental and
socio-economic pressures. This study comprehensively reviews 35 peer-reviewed articles
retrieved through a structured search on the Scopus database, using specific keywords
related to cork oak systems and RS technologies. Our review is a valuable snapshot of
current research trends, methodological approaches, and knowledge gaps, offering insights
for future scientific development and practical applications, and should represent a key
document for guiding researchers approaching this topic.

4.2. Spatial Overview of Reviewed Research

Most of the reviewed studies were conducted in Portugal and Spain, accounting for 12
and 9 studies, respectively. This geographic concentration reflects the significant ecological
and economic weight of cork oak systems in these two countries, which together represent
approximately 80% of global cork production. In addition to being the primary non-wood
forest product in Southern Europe [64], cork harvesting remains deeply embedded in the
socio-cultural fabric of Iberian rural areas and constitutes a key pillar of the local bioecon-
omy [9]. Morocco has shown a recent rise in publications of satellite-based monitoring
of cork oak ecosystems, especially after 2022, reflecting increased attention to sustainable
forest management, certification initiatives, and the conservation of Mediterranean sil-
vopastoral systems. Morocco’s efforts aim to support both biodiversity and the livelihoods
of smallholders and local communities [14]. In contrast, research output remains limited in
Italy (3) and North African countries like Algeria (1), while France and Tunisia showed no
satellite-based studies specifically focused on cork oak, despite being part of the natural
distribution of Quercus suber (Figure 1). This spatial imbalance may stem from a decreasing
economic interest in cork oak woodlands, as their lower economic returns, compared
to western Mediterranean countries with shorter harvest cycles and higher yields [14],
reduce their appeal and the incentive for active management. Additionally, the relatively
low number of studies originating from North African countries can be largely explained
by structural constraints, including limited access to scientific infrastructure, insufficient
research funding, and a lack of sustained international collaboration. These dynamics
highlight the urgent need for integrated, transboundary strategies to effectively monitor,
conserve, and manage cork oak ecosystems under increasing socio-ecological pressures
across the Mediterranean basin [65].
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4.3. Research Focus and Thematic Gaps

The reviewed studies were aggregated into four main research topics: forest distur-
bance (FD), forest variables (FVs), land cover classification (C), and environmental variables
(EVs), with FD and C emerging as the most explored topics. Studies on FD, such as cork
oak woodlands dieback and decline [30–33], pest outbreaks [34], wildfire risk [35–38], and
water stress [40,41] reflect the vulnerability of cork oak ecosystems to climate change and
biotic and anthropogenic pressures. Research on C examined land cover changes in cork
oak ecosystems over time [42–45], reflecting a general cork oak decline all over the areas of
study. Research on FV investigated indicators such as biomass, carbon stock, and evapo-
transpiration [16,51–55,58] to assess ecosystem health, carbon dynamics, and productivity,
highlighting not only ecological functions but also the economic value of cork. These
pressures are driving land abandonment, contributing to significant biodiversity loss, and
undermining the crucial ecosystem services provided by these landscapes, underscoring
the need for robust policy frameworks to support sustainable forest management and
land-use planning [65,66].

However, some ecologically crucial themes remain underexplored. Topics such as
biodiversity and ecosystem resilience are rarely addressed directly. When they do appear,
they are often isolated cases with limited cross-comparability, hindering the development of
a systemic understanding of cork oak ecosystem functioning. For example, the assessment
of cork oak forest post-wildfire resilience [37] provides valuable insight into resilience but
is restricted to specific contexts. Studies on groundwater dependency [60] and soil organic
matter [59] explore environmental variables relevant to cork oak ecosystems, yet they are
disconnected from broader ecological assessments. Similarly, research on landscape con-
nectivity [54] focuses on aspects related to biodiversity but remains a standalone analysis.
Collectively, these cases underline the fragmented nature of current research and highlight
the need for more integrated approaches.

An important step forward for a more comprehensive understanding of resilience
would be to leverage satellite-derived recovery metrics. Ref. [67] demonstrated how long-
term Landsat time series can effectively quantify disturbance and recovery dynamics at a
large scale using metrics such as Year to Recovery (Y2R). Adapting similar methodologies
to cork oak ecosystems, which are increasingly exposed to multiple pressures and distur-
bances, could provide scalable and repeatable insights into resilience patterns, supporting
informed management decisions. In terms of biodiversity, Ref. [68] showed that spectral
diversity derived from high-resolution IKONOS satellite imagery can successfully predict
habitat heterogeneity and plant species richness in temperate mixed forests. Applying
such methods to cork oak woodlands could enhance biodiversity monitoring across large
spatial scales, offering an opportunity to connect remote sensing indicators with ecological
processes and overcoming the limitations of isolated field-based studies.

4.4. Satellite Data and Derived Predictors

Among satellite missions, Landsat emerged as the most frequently used, appearing in
20 studies. Its long temporal record and its freely available datasets make it suitable for long-
term monitoring of forest variables such as biomass, carbon stock, and land cover changes.
MODIS, used in 9 studies, enabled large-scale monitoring of vegetation and hydrological
variables such as evapotranspiration and water stress. However, a few limitations were
found in the MODIS application, such as coarse spatial resolution (250–1000 m). It often
fails to capture fine-scale variability, limiting the effectiveness in detecting subtle changes
in cork oak cover, especially in mixed forest systems or fragmented landscapes [31,35].
Sentinel-2, thanks to its higher spatial and temporal resolution, proved particularly effective
for studies on FD, including damage detection, species differentiation, and water stress
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assessment. Commercial satellite data, such as QuickBird, WorldView2, and Pléiades,
have been used only in isolated cases. This highlights the key role of open-access satellite
missions, which provide broader accessibility.

NDVI was the most widely applied vegetation index across all research themes,
with a total of 20 applications. This aligns with the fact that NDVI is the most popular
vegetation index in remote sensing. Its dominance stems from its historical significance,
simplicity, broad applicability, and effectiveness in extracting vegetation information from
multispectral imagery [69]. NDVI showed a highly significant correlation with dieback
severity [30], forest biomass and productivity [51], or soil organic matter (SOM) [59].
Furthermore, NDVI proved to be highly effective in distinguishing healthy from dead cork
oak trees [32]. However, this accuracy was likely influenced by the well-spaced distribution
of trees. In dense forests or areas where cork oak canopies overlap, the algorithm failed to
identify individual trees [32]. Nevertheless, its limitations are well-documented, as it tends
to saturate under high biomass conditions and performs poorly in dense or overlapping
canopies [48]. As a result, complementary indices—such as EVI, SAVI, and texture-based
or SWIR-derived metrics—were increasingly adopted to overcome these issues, especially
in heterogeneous Mediterranean landscapes [48].

Several studies integrated or validated satellite data with other methodologies, achiev-
ing improved model performance. For instance, [16,51,60] used National Forest Inventories
(NFIs) alongside satellite information, while [33,47] combined remote sensing with field
surveys and UAV data. Other studies incorporated ALS data [36] or validated satellite data
with UAV LiDAR and ground observations [50]. These approaches demonstrated the value
of combining satellite data with higher-resolution, detailed measurements from airborne or
ground-based platforms to improve accuracy and understanding of cork oak ecosystems.

Interestingly, while hyperspectral data from airborne platforms or portable spectrom-
eters have been frequently used to study cork oak ecosystems [70–73], no studies were
found that applied hyperspectral data from spaceborne sensors to these environments.
Considering the recent availability of free and open-access hyperspectral satellite missions
(e.g., PRISMA, EnMAP) and their ability to cover much larger study areas compared to the
methods mentioned above, this gap presents a promising opportunity to expand cork oak
monitoring with detailed spectral information at a broader spatial scale.

4.5. Methods and Statistical Performance

Machine learning techniques have been widely adopted (24 different methods used),
reflecting the growing complexity and volume of satellite data. Random Forest (RF), K-
Nearest Neighbors (KNN), Mann-Kendall (MK), and Stochastic Gradient Boosting (SGB)
were each applied three times across the studies. However, their use was highly hetero-
geneous, not only in terms of the variety of algorithms but also in the diversity of topics
addressed (e.g., forest disturbances, productivity, land cover classification) and the char-
acteristics of the input data (e.g., sensor type, temporal extent, spatial resolution), which
complicates direct comparisons of results and the integration of findings across studies.
Moreover, many studies could not be included in a direct comparison of accuracy because
they used unusual accuracy metrics that were not adopted by any other studies. This lack
of standardization was particularly evident in studies focusing on carbon stock, biomass,
and productivity [16,52,53], where different accuracy metrics were used, making it difficult
to compare with studies on the same topic like [50], which used R2, or [51], which used
RMSE. Similarly, research on environmental variables such as [37,59,61] lacked standard
accuracy evaluation methods. On the other hand, land cover classification studies were
generally more consistent, with most adopting OA as accuracy metric, enabling more
direct cross-comparison.
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Despite these challenges, some models achieved better performances than others:
Ref. [63] reported the highest R2 values (0.86–0.94) when analyzing the influence of oak
canopy cover on land surface albedo (LSA) and temperature (LST), demonstrating that a
potential tree canopy cover regression in oak ecosystem may produce significant changes
in LSA and LST, which from a long-term perspective that may potentially alter the mi-
crometeorological conditions affecting cork oak ecosystem functioning and sustainability.
Meanwhile, Ref. [41] reported the lowest RMSE (0.47 mm/day) by estimating ET using
Sentinel-2 for monitoring water consumption and water stress in cork oak savanna. Fi-
nally, Ref. [32] reached 98% OA with a K-means unsupervised algorithm on Pléiades very
high resolution imagery for cork oak mortality mapping in a pasture environment. On
the other hand, other studies suffered from poor performance in complex classification
tasks, particularly in discriminating different classes of tree disease severity (intermediate
damaged/severely damaged) with an OA of 50.8% [34].

4.6. From Monitoring to Management: Enhancing Ecosystem Resilience Through
Sustainable Practices

Cork oak forests represent key ecosystems that provide ecological, cultural, and
economic services. However, these forests are increasingly threatened by climate change
and human pressures, with challenges including rising tree mortality, prolonged droughts,
pest infestations, more frequent wildfires, and forest abandonment. Warmer and drier
springs and summers are expected to reduce cork harvests and likely hinder cork oak
growth, particularly in continental, seasonally dry regions of the main cork-producing
countries [7]. The reviewed studies report a consistent and serious decline of cork oak
ecosystems across all examined countries of study. The analysis of Los Alcornocales Natural
Park (Spain), Europe’s largest cork oak forest, reveals significant declines in tree cover
between 2000 and 2022, highlighting the severity of oak decline [31]. In Morocco, a decrease
in cork oak cover (from 60.71% to 44.42%) and an increase in eucalyptus (from 18.11%
to 39.31%) have been identified [43]. Additionally, studies in Morocco [35,39] identify
the main regions affected by deforestation and wildfires in cork oak and matorral stands.
Research by [54] highlights the increasing isolation and fragmentation of montado properties
in Portugal. Managing these declining forests is a critical challenge that must be addressed
to maintain the ecosystem services provided by cork oak forests and ensure their resilience
in the near future. Therefore, continuous and long-term monitoring is essential to assess
the status of ecosystem assets and track environmental trends [74]. Addressing these
challenges requires adaptive strategies that combine continuous monitoring, advanced
technologies, and localized restoration efforts to support the long-term sustainability of
these ecosystems [7,75].

A proactive, forward-looking approach is needed for managing these agroforestry
ecosystems. Remote sensing (RS) constitutes an essential tool for informing and supporting
ecosystem management, providing scalable, cost-efficient, and continuous monitoring of
ecological conditions. By harnessing satellite-derived data, it is possible to detect areas
of decline, evaluate stressors such as drought and canopy degradation, and prioritize
targeted interventions, including thinning, pest management, and water regulation. These
data-driven insights facilitate the implementation of a wide array of adaptive manage-
ment strategies—from wildfire prevention and rotational grazing to the enhancement of
landscape connectivity—that collectively bolster ecosystem resilience and promote the long-
term sustainability of cork oak woodlands. Among these, certain nature-based approaches,
such as restoring degraded areas or promoting multifunctional land use, can complement
technical and silvicultural measures to enhance overall system functionality [15,76]. The
adoption of integrated management approaches also requires strong political will and policy
support for sustainable forest management and ecosystem restoration, ensuring the long-
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term sustainability of cork oak forests and addressing global ecological challenges [74,75].
Combining cutting-edge monitoring technologies with adaptive management and support-
ive policy frameworks is essential to address current challenges and maintain the ecological
integrity and productivity of these ecosystems.

4.7. Future Research Directions

Despite growing interest and technological progress, the use of satellite RS for moni-
toring cork oak ecosystems remains in an early stage of development, with a total of just
35 articles published to date. As highlighted throughout this review, significant poten-
tial remains untapped, particularly in terms of methodological standardization, thematic
expansion, and operational integration.

The reviewed studies addressed a variety of topics, from forest disturbances to pro-
ductivity, land cover classification, and environmental variables, which naturally leads
to differences in objectives in data characteristics. However, certain components of the
methodological workflow could benefit from greater standardization. For example, the
consistent use of validation metrics (e.g., OA, RMSE, R2) would improve comparability
across studies on similar topics and enable clearer benchmarking of model performance.
Rather than aiming for a universal framework that covers all possible research questions,
a more feasible approach would be to establish standardized components within flexible
workflows, allowing for both comparability and thematic specificity.

At the same time, there is a need to broaden the thematic scope of RS applications. To
date, most studies have focused on forest structure and stress indicators, such as canopy
cover, biomass, or water stress. However, to effectively support conservation and restora-
tion efforts, monitoring must also capture more functional and ecological indicators, in-
cluding biodiversity, ecosystem services, and resilience. These variables are essential to
understand long-term ecosystem functioning but remain poorly represented in scientific
literature, often addressed only through indirect proxies.

Future studies should also seek to improve data integration across spatial scales
and data sources. The combination of satellite imagery with UAV data, field surveys, and
airborne LiDAR can provide a more comprehensive and nuanced picture of cork oak ecosys-
tem dynamics [42]. Recent advances in satellite missions, such as the Harmonized Landsat
and Sentinel-2 (HLS) products, also offer promising opportunities for higher temporal and
spatial resolution, which could significantly enhance predictive power and monitoring
precision [49]. Further exploration of alternative spectral indices—such as NDWI, NMDI,
PSRI, and SWIR-based composites—may support more accurate assessments of moisture
stress, senescence, and vegetation health. Furthermore, the lack of hyperspectral satellite
data in cork oak studies highlights an area for future exploration. With the availability of
free hyperspectral missions like PRISMA and EnMAP, there is an opportunity to enhance
monitoring efforts. For example, Ref. [77] demonstrated PRISMA’s potential for detailed
forest fuel types mapping in Mediterranean holm oak forests, a methodology that could be
adapted to cork oak ecosystems. In parallel, research efforts should be extended to regions
currently under-monitored, particularly in North Africa, to ensure a more comprehensive
understanding of cork oak ecosystems across their full biogeographic range. Strengthening
scientific collaboration and capacity-building in these areas will be essential to achieve a
more equitable and comprehensive understanding of cork oak woodlands across their full
biogeographic range.

Finally, remote sensing research should move beyond technical accuracy and align
more closely with practical management needs and policy frameworks. A stronger integra-
tion with adaptive forest management strategies, such as the EU Biodiversity Strategy, is
essential to ensure that scientific innovations effectively support operational and policy-
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relevant actions. This involves designing RS tools not only for academic purposes, but also
as practical instruments for restoration planning, early-warning systems, and performance
monitoring of conservation efforts.

5. Conclusions
Cork oak woodlands represent one of the most emblematic agro-silvo-pastoral systems

of the Mediterranean basin, renowned for their sustainable production of cork—one of the
most valuable non-wood forest products worldwide—and for supporting a wide range of
flora and fauna, including endemic and threatened species, while playing a vital role in
sustaining ecosystem services and rural livelihoods. Yet they are increasingly vulnerable
to climatic and anthropogenic stressors, land abandonment, and degradation. Satellite
RS represents an increasingly essential tool for monitoring forest dynamics, enabling the
tracking of ecological health, species habitat quality, and forest degradation on cork oak
systems—topics directly relevant to biodiversity and conservation. Based on the current
body of literature, three main conclusions can be drawn.

First, the use of satellite RS in cork oak landscapes is still a relatively young and
evolving field. Although several innovative applications exist, the lack of common protocols
and methodological benchmarks reveals both a gap and a promising potential for further
development and interdisciplinary collaboration.

Second, the integration of multi-source satellite data with advanced modelling tech-
niques, such as machine learning and time-series analysis, has demonstrated high potential
for capturing key forest variables, including decline dynamics, productivity trends, and
hydrological stress. These methods offer scalable solutions for both local assessments and
international planning.

Third, to fully support more effective agroforestry management, future research should
expand toward more functional and ecosystem-based indicators, incorporating variables
such as biodiversity and ecosystem resilience. Strengthening the connection between RS
outputs, practical management strategies and policies can provide critical support for
adaptive decision-making and the implementation of sustainable practices.

Our review provides a valuable overview of current research trends, methodological
approaches, and existing knowledge gaps. It offers insights to support future scientific
advancements and practical applications, serving as a key reference for researchers entering
this field.
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